INTRODUCTION
Solanum xanthocarpum, commonly known as ‘Bhaktatya’ is a member of the family Solanaceae. It is annual prickly diffuse herb. According to the Chhaterjee and Prakash (1995), the whole plant is alternative, antiasthmatic, digestive, febrifuge, bitter and pungent. The fruits flower and stems are bitter and carminative and associated with a vesicular and watery eruption. The leaves are considered anodyne and their juice with black pepper is prescribed in rheumatism (Chopra et al., 1996). There is a fair demand of different parts of this herb in homeopathic pharmacies. This herb is present in Chhattisgarh since generations with a rich medicinal knowledge of natives and traditional healers about the plant. The chlorophyll is also plays important role in plant physiology and it can be act as nutrition in decline blood sugar conditions, detoxification, digestion, excretion and decreasing allergens (Srichaikul et al., 2011, Singh et al., 2011).

MATERIAL AND METHODS
Planting Solanum xanthocarpum: Collected seeds were sown in nursery beds to raise the seedlings in the month of Jan-Feb. Seedlings attended attended a height about 4-5 cm. After one month of sowing i.e. in the month of March, seedlings of equal size were now taken and transplanting from nursery to experimental area. Twenty five seedlings were planted in each of the plot area, spacing 20×20 cm in a row.

Estimation of Chlorophyll Content: Quantitative estimation of chlorophyll content was made following Aron (1949) while carotenoids were estimated following Duxbury and Yentsh (1956). 1gm fresh leaf material was homogenized with excess of 80% acetone and centrifused at 3000rpm. Supernatent volume was adjusted to 100ml. The optical density of this extract was measured at 480, 510, 645 and 663nm.

Concentration of Leaf chlorophyll is an important factor that is regularly measured as an indicator of chloroplast content, photosynthetic mechanism and of plant metabolism. In this study chlorophyll a (Chl. a) and b (Chl. b) Total chlorophyll and carotenoids were determined in different soil such as Kanhar soil, Bhatta soil and Matasi soil in Solanum xanthocarpum. The quantitative difference of chlorophyll a (Chl.a) and b (Chl.b) Total chlorophyll and carotenoids were observed. Maximum amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids were found with plants grown in Kanhar soil, Bhatta soil and Matasi soil respectively.

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Chlorophyll a (mg/gm)</th>
<th>Chlorophyll b (mg/gm)</th>
<th>Total Chlorophyll (mg/gm)</th>
<th>Carotenoids (mg/gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanhar Soil</td>
<td>0.306±0.007</td>
<td>0.089±0.009</td>
<td>0.396±0.016</td>
<td>0.272±0.016</td>
</tr>
<tr>
<td>Bhatta Soil</td>
<td>0.284±0.004</td>
<td>0.010±0.005</td>
<td>0.382±0.006</td>
<td>0.183±0.010</td>
</tr>
<tr>
<td>Matasi Soil</td>
<td>0.270±0.032</td>
<td>0.055±0.01</td>
<td>0.326±0.036</td>
<td>0.159±0.011</td>
</tr>
</tbody>
</table>

REFERENCES: