	INAL RESEARCH PAPER	Mathematics
	HE HOMOGENEOUS BI-QUADRATIC ATION $X^{4}-Y^{4}=26\left(2 Z^{2}-2 W^{2}\right) T^{2}$ WITH FIVE NOWNS	KEY WORDS: Bi-Quadratic equation, Integral solutions, Special polygonal numbers, Pyramidal numbers.
R. Anbuselvi	Professor, Department of Mathematics, A.D.M. College for Women(Autonomous), Nagapattinam- 611001, Tamil Nadu, India.	
S.A. Shanmugavadivu	Professor, Department of Mathematics, T.V.K. Govt Arts College, Tiruvarur 610003, Tamil Nadu, India.	

The Bi-quadratic equation with five unknowns given by $X^{4}-Y^{4}=26\left(2 Z^{2}-2 W^{2}\right) T^{2}$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

INTRODUCTION

Bi-quadratic Diophantine Equations(homogeneous and non-homogeneous) have aroused the interest of numerous mathematicians since ambiguity as can be seen from [1-7]. In the context one may refer [8-17] for varieties of problems on the Diophantine equations with two, three and four variables. This communication concerns with the problems of determining non-zero integral solutions of yet another biquadratic equation in five unknowns represented by $X^{4}-Y^{4}=26\left(2 Z^{2}-2 W^{2}\right)$. A few interesting relations between the solutions and special polygonal numbers are presented.

Notations used:

* $T_{m, n}$ - Polygonal number of rank n with size m
* $P r_{n}$ - Pronic number of rank n.
* $S O_{n}$ - Stella Octangular number of rank n
* Obl_{n} - Oblong number of rank n.
* OH_{n} - Octahedral number of rank n.|
* GnO_{n} - Gnomic number of rank n.
* $P P_{n}$ - Pentagonal Pyramidal number of rank n.
* $S_{n}-$ Star number of rank n.
* $K y_{n}-$ Kynea number of rank n.
* $C P_{n}^{14}$ - Centered tetra decagonal pyramidal number of rank n
* CH_{n} - Centered Hexagonal number of rank n.
* $C P_{n}$ - Centered pentagonal number of rank n.
* $4 D F_{n}$ - Four Dimensional figurate number where generating polygon is a square.
* j_{n} - Jacobthal Lucas number of rank n.
${ }^{*} J_{n}$ - Jacobthal number of rank n.

METHOD OF ANALYSIS

The Diophantine equation representing the bi-quadratic equation with five unknowns under consideration is
$x^{4}-y^{4}=26\left(2 z^{2}-2 w^{2}\right) T^{2}$
The substitution of the linear transformations
$x=2 u+2 v ; y=2 u-2 v ; z=4 u+4 v ; w=4 u-4 v$
(2) In (1) leads to $u^{2}+v^{2}=26 T^{2}$

Different patterns of solutions of (1) are presented below:

Pattern - 1
Equation (3) can be written as

$$
\begin{equation*}
\frac{u+T}{5 T+v}=\frac{5 T-v}{u-T}=\frac{a}{b} \tag{4}
\end{equation*}
$$

|www.worldwidejournals.com

From equation (4), we get the values of u, v and T

$$
\begin{aligned}
& u=-a^{2}+b^{2}-10 a b \\
& v=5 a^{2}-5 b^{2}-2 a b \\
& \mathrm{~T}=-\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Hence in view of (2) the corresponding solutions of (1) are

$$
\begin{aligned}
& x=x(a, b)=8 a^{2}-8 b^{2}-24 a b \\
& y=y(a, b)=-12 a^{2}+12 b^{2}-16 a b \\
& z=z(a, b)=16 a^{2}-16 b^{2}-48 a b \\
& w=w(a, b)=-24 a^{2}+24 b^{2}-32 a b \\
& \mathrm{~T}=-\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Properties:

1. $3 x(a(a+1), 2 a+1)+w(a(a+1), 2 a+1)+624 P_{a}^{4}=0$
2. $x(a, 5 a-3)+z(a, 5 a-3)-w(a, 5 a-3)+208 T_{7, a}=0$
3. $z(a(a+1), a)-16 T(a(a+1), a)-384 F N_{a}^{4}-4 T_{4,4 a}+64 C P_{a}^{6}+96 P_{a}^{5}=0$
4. $x(b(b+1), 2 b+1)-4 T(b(b+1), 2 b+1)$
$-y(b(b+1), 2 b+1)-32 P r_{b}+240 S P_{b}-j_{3} \equiv 0(\bmod 1)$
5. $x\left(7 b^{2}-4, b\right)+8 T\left(7 b^{2}-4, b\right)+t_{34, b}+72 C P_{b}^{14} \equiv 0(\bmod 15)$
6. $y\left(a^{2}, a+1\right)+12 T_{4, a^{2}}-2 \mathrm{Obl}_{a}-\mathrm{GnO}_{a}-3=0$
7. $x\left(2 a^{2}-1, a\right)-384 F N_{a}^{4}+t_{18,} \equiv 3(\bmod 7)$
8. $z\left(b, 2 b^{2}+1\right)+4 T_{4,4 b^{2}}+12 T_{4,2 b}+j_{4}+144 O H_{b}-1=0$
9. $w(b(b+1), 5 b-2)-288 F N_{a}^{4}+96 P_{b}^{5}-6 T_{4,10 D}+192 H P_{b} \equiv 96(\bmod 480)$
10. $T\left(3 a^{2}-1, a^{2}\right)+10 T_{4, a^{2}}-6 T_{4, a}-1=0$
11. Each of the following expressions represents a nasty number
(i) $x(a, a) \& z(a, a)$
(ii) $2 y(a, a)$
(iii) $6 T(a, a) \& 2 w(a, a)$
12. $y(a, a)$ is a perfect square.

Pattern - 2

Assume $T=T(a, b)=a^{2}+b^{2}$ where a and b are non-zero distinct integers
(5)
write 26 as $26=(1+5 i)(1-5 i)$
using (5) \& (6) in (3), and employing the method of factorization, define

$$
u+i v=(1+5 i) \quad(a+i b)^{2}
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=u(a, b)=a^{2}-b^{2}-10 a b \\
& v=v(a, b)=5 a^{2}-5 b^{2}+2 a b
\end{aligned}
$$

Hence in view of (2) the corresponding solutions of (1) are

$$
\begin{aligned}
& x=x(a, b)=12 a^{2}-12 b^{2}-16 a b \\
& y=y(a, b)=-8 a^{2}+8 b^{2}-24 a b \\
& z=z(a, b)=24 a^{2}-24 b^{2}-32 a b \\
& w=w(a, b)=-16 a^{2}+16 b^{2}-48 a b
\end{aligned}
$$

Properties:

1. $x\left(a, 2 a^{2}-1\right)+y\left(a, 2 a^{2}-1\right)-w\left(a, 2 a^{2}-1\right)-85 O_{a}$

$$
+960\left(4 F D_{a}\right)-20 P r_{a}+C P_{3}^{6}-K y_{1} \equiv 0(\bmod 20)
$$

2. $x\left(7 a^{2}-4, a\right)+y\left(7 a^{2}-4, a\right)+T\left(7 a^{2}-4, a\right)-120 C P_{a}^{14}-2940 F N_{a}^{4}+T_{76 a}+K y_{3}-J_{2} \equiv 0(\bmod 37)$
3. $3 y(a(a+1), 5 a-2)+z(a(a+1), 5 a-2)+624 H P_{a}=0$
4. $x(1, b)-12 T(1, b)+48 T_{3, b}-8 P r_{b}+8 T_{4, b}=0$
5. $y\left(a, 2 a^{2}+1\right)+72 O H_{a}-8 T_{4,2 a^{2}}+C P_{2}^{6}-12 S O_{a} \equiv 0(\bmod 12)$
6. $z(a(a+1), 2 a+1)+192 S q P_{a}-6 T_{42 a^{2}}-2 T_{13, a}+83 O b l_{a}-48 C P_{a}^{6} \equiv 0(\bmod 5)$
7. $z(b, b+1)+w(b, b+1)-16 T(b, b+1)+80 P r_{b}+32 T_{3, b} \equiv 24(\bmod 32)$
8. $w(b, 11 b-9)-2 y(b, 11 b-9)-w(b, 11 b-9)+19150 b l_{b}-1296 \mathrm{GnO}_{b}-48 T_{13, b}+2 T_{7, b} 0(\bmod 2488)$
9. $2 y(a(a+1), a+2)+16 T(a(a+1), a+2)+288 P_{A}^{3}-T_{66, a} \equiv 32(\bmod 98)$
10. $x\left(b^{2}, b+1\right)+w\left(b^{2}, b+1\right)+48\left(4 D F_{b}\right)+128 P P_{b}-20 T_{3, b}-J_{6}+K y_{1} \equiv 0(\bmod 18)$
11. Each of the following expressions represents a nasty number

> (i) $4 x(a, a) \& y(a, a)$
> (ii) $2 z(a, a) \& x(a, a)$
> (iii) $w(a, a)$

Pattern - 2

Instead of (5) write 26 as

$$
\begin{equation*}
26=(5+i)(5-i) \tag{7}
\end{equation*}
$$

Following a similar procedure as in pattern -2 , the solutions for (3) are as follows,

$$
\begin{align*}
& u=u(a, b)=5 a^{2}-5 b^{2}-2 a b \\
& v=v(a, b)=a^{2}-b^{2}+10 a b \tag{8}
\end{align*}
$$

In view of (2) and (8) the solutions of (1) are obtained as

$$
\begin{aligned}
& x=x(a, b)=12 a^{2}-12 b^{2}+16 a b \\
& y=y(a, b)=8 a^{2}-8 b^{2}-24 a b \\
& z=z(a, b)=24 a^{2}-24 b^{2}+32 a b \\
& w=w(a, b)=16 a^{2}-16 b^{2}-48 a b \\
& T=a^{2}+b^{2}
\end{aligned}
$$

Properties

1. $12 T\left(b^{2}, b^{2}-1\right)+x\left(b^{2}, b^{2}-1\right)-w\left(b^{2}, b^{2}-1\right)-768 F N_{b}^{4}$

$$
-288\left(4 D F_{b}\right)+2 T_{4,2 b}-C P_{3}^{6}+J_{5}=0
$$

2. $x(2 a+1), 2 a)-3 y(2 a+1), 2 a)+z(2 a+1), 2 a)-480 P r_{a} \equiv 24(\bmod 192)$
3. $w(a(a+1),(a+2)(a+3))+1152 P t_{a}+192 O H_{a}+T_{4,24 a} \equiv 576(\bmod 896)$
4. $3 w(b(b+1), b+2)-2 z(b(b+1), b+2)+1248$ Tet $_{b}=0$
5. $8 T\left(a^{2}, a^{2}\right)$ is a bi-quadratic number
6. $y(b, 3 b-1)+T_{4,8 b}-8 G n O_{b}+48 T_{5, a} \equiv 0(\bmod 32)$
7. $6 x\left(7 b^{2}-4 b, 1\right)-9 y\left(7 b^{2}-4 b, 1\right)-936 C P_{b}^{14}=0$
8. $y(5, b)+z(5, b)-2 T(5, b)+39 \mathrm{Pr}_{b}-S_{b}-C H_{b}-38 G n O_{b}-T_{4,27}+C P_{4}^{6}+K y_{1}=0$
9. $w(3,3)+T(3,3)+J_{10}+j_{6}+K y_{1} \equiv 0(\bmod 1)$
10. Each of the following expressions represents a nasty number
(i) $y(a, a)$
(ii) $2 z(a, a) \& w(a, a)$
(iii) $4 x(a, a)$

Pattern - 4

Rewrite (3) as $26 T^{2}-v^{2}=u^{2} * 1$
Assume $u=26 a^{2}-b^{2}$
Write (1) as $=(\sqrt{26}-5)(\sqrt{26}+5)$
Using (10) and (11) in (9) and employing the method of factorization, we write

$$
\sqrt{26} T+v=(\sqrt{26}-5) \quad(\sqrt{26} a+b)^{2}
$$

Equating the rational and irrational parts, we have

$$
\begin{align*}
& v=v(a, b)=130 a^{2}+5 b^{2}+52 a b \\
& T=T(a, b)=26 a^{2}+b^{2}+10 a b \tag{12}
\end{align*}
$$

In view of (2) and (12), the solutions of (1) are obtained as

$$
\begin{aligned}
& x=x(a, b)=312 a^{2}+8 b^{2}+104 a b \\
& y=y(a, b)=-208 a^{2}-12 b^{2}-104 a b \\
& z=z(a, b)=624 a^{2}+16 b^{2}+208 a b \\
& w=w(a, b)=-416 a^{2}-24 b^{2}-208 a b \\
& T=T(a, b)=26 a^{2}+b^{2}+10 a b
\end{aligned}
$$

Properties

1. $x(a, 11 a-9)+y(a, 11 a-9)+4 T(a, 11 a-9)-80 T_{13, a}-T_{418, a} \equiv 0(\bmod 207)$
2. $z(b(b+1), b+2)-1248 P_{E}^{2}-624 T_{4, b^{2}}-1879 O H_{b}-10 T_{4, s b} \equiv 64(\bmod 560)$
3. $w(b, 4)+T(b, 4)+390 P r_{b}-C P_{7}^{6}+T_{4,5} \equiv 0(\bmod 402)$
4. $y(b, 5 b-3)-w(b, 5 b-3)-505 T_{4, b}-C H_{b}-208 T_{7, b}+107 G n O_{b} \equiv 0(\bmod 143)$
5. $x\left(b, 2 b^{2}+1\right)-3120 H_{b}-384 F N_{b}^{4}-15 T_{4,5 b} \equiv 8(\bmod 1)$
6. $x\left(a^{2}+a, 2 a^{2}-1\right)+y\left(a^{2}+a, 2 a^{2}-1\right)+w\left(a^{2}+a, 2 a^{2}-1\right)+840 B i q_{a}-1040 C P_{a}^{6}-2 T_{4,2 a} \equiv 28(\bmod 208)$
7. $z\left(2 a, a^{2}\right)+w\left(2 a, a^{2}\right)+2 T\left(2 a, a^{2}\right)-T_{4,32 b^{2}}-10 T_{4, a^{2}}+C P_{a}^{6}=0$
8. $y(a, a)$ is a perfect square
9. $T(2,1)+C P_{5}^{6}=0$
10. $y(b(b+1),(b+2)(b+3))-4 w(b(b+1),(b+2)(b+3))+T(b(b+1),(b+2)(b+3))-17712 P t_{b}-18804 F N_{b}^{4}$ $-7628 P_{E}^{5}+754 T_{4, b}-2550 \mathrm{GnO}_{b}+j_{9}-j_{1}=0$

Pattern - 5

Introduction of the Linear Transformation

$$
v=\mathrm{X}+26 \mathrm{R}, \quad T=\mathrm{X}+\mathrm{R}, \quad u=5 \mathrm{U}
$$

$\ln (3)$ leads to $X=r^{2}+26 S^{2}$

$$
\begin{aligned}
& \mathrm{R}=2 r \mathrm{~S} \\
& \mathrm{U}=r^{2}-26 \mathrm{~S}^{2}
\end{aligned}
$$

Substituting the above values of X, U and R in (13), the corresponding non-zero distinct integer solutions of (3) are given by

$$
\begin{gathered}
v=v(r, s)=r^{2}+26 s^{2}+52 r s \\
\quad u=u(r, s)=5 r^{2}-130 s^{2} \\
T=T(r, s)=r^{2}+26 s^{2}+2 r s
\end{gathered}
$$

Thus the corresponding solutions of (1) are found to be

$$
\begin{gathered}
x=x(r, s)=12 r^{2}-208 s^{2}+104 r s \\
y=y(r, s)=8 r^{2}-312 s^{2}-104 r s \\
z=z(r, s)=24 r^{2}-416 s^{2}+208 r s \\
w=w(r, s)=16 r^{2}-624 s^{2}-208 r s \\
T=T(r, s)=r^{2}+26 s^{2}+2 r s
\end{gathered}
$$

Properties

1. $x\left(r^{2}, r+1\right)+z\left(r^{2}, r+1\right)-T\left(r^{2}, r+1\right)-620 P_{r}^{5}-420 F N_{r}^{4}+6150 b l_{r} \equiv 650(\bmod 685)$
2. $x(r, 3 r-1)+y(r, 3 r-1)+z(r, 3 r-1)+8380 T_{4, r}-936 G n O_{r}-416 T_{5, r} \equiv 0(\bmod 3744)$
3. $T(r,(r+1)(r+2))-4 P_{r}^{3}-12\left(4 D F_{r}\right)-56 P P_{r}+26 C P_{r}^{6}-j_{7}+K y_{2} \equiv 0(\bmod 104)$
4. $y(s, 5 s-3)+208 T_{7, s}+7792 T_{4, s}+J_{13}+K y_{3}-j_{0} \equiv 0(\bmod 9360)$
5. $y(s,(s+1)(s+2))-8 T(s,(s+1)(s+2))+720$ Tet $_{s}+T_{1042, s} \equiv 0(\bmod 519)$
6. $w(2 r+1, r(r+1))-160 O b l_{r}-10 T_{4,2}+960 S q P_{r}=0$
7. $z(s,(s+1)(5 s-2))-w(s,(s+1)(5 s-2))-y(s,(s+1)(5 s-2))+3120 H P_{s}-520 T_{4, s}=0$
8. $x\left(7 r^{2}-4, r^{2}\right)-312 C P_{r}^{14}-7056\left(4 D F_{r}\right)+73 T_{4,2 r}-3 C P_{4}^{6}=0$
9. $2 x\left(2 s^{2}-1, s\right)-z\left(2 s^{2}-1, s\right)+T\left(2 s^{2}-1, s\right)-2 S O_{s}-T_{4,2 s^{2}}-T_{46, s}-J_{1} \equiv 0(\bmod 21)$
10. $w(1,1)+z(1,1)-C P_{10}^{6}=0$.

Conclusion

To conclude, one may search for other patterns and their corresponding properties.

Reference

1. Dickson.L.E.,(2005), History of Theory of numbers,vol.2:Diophantine Analysis, New York, Dover.
2. Mordell.L.J.,(1969),Diophantine Equations, Academic press, London.
3. Carmichael.R.D.,(1959), The theory of numbers and Diophantine Analysis, New York, Dover.
4. Lang.S.,(1999), A lgebraicNumber Theory.,Second edision, New York, Chelsea
5. Weyl.h., (1998),Algebraic theory of numbers,Princeton,NJ: Princeton University press.
6. Oistein Ore,(1988),Number theory and its History, New York, Dover.
7. T.Nagell,(1981),Introduction to Number theory, Chelsea(New York).
8. Cohnj.H.E.,(1971), The Diophantine equation $y(y+1)(y+2)(y+3)=2 x(x+1)(x+2)(x+3)$ Pacific J.Math. 37,331-335.
9. Mihailov, (1973), On the equation $x(x+1)=y(y+1) z^{2}, G a z . M a t . S e c . A 78,28-30$
10. Leabey.W.J.,(1976), and Hsu. D.F,The Diophantine equation $y^{4}=x^{3}+x^{2}+1$ Rocky Mountain J.Math.Vol.6,141-153.
11. Cross J.T.,(1993), In the Gaussian Integers $\alpha^{4}+\beta^{6} \neq \gamma^{4}$ Math.Magazine, 66,Pp.105-108.
12. Sandorszobo,(2004),some fourth degree Diophantine equation in Gaussian integers: Electronic Journal of combinatorial Number theory, Vol4, Pp.1-17
13. Gopalan ,M.A., Manju Somanath and Vanitha.N.,(2007),Parametric integral solutions of $x^{2}+y^{3}=z^{4}$,Acta Ciencia Indica, Vol XXXIII M,No.4,1261-1265.
14. Gopalan. M.A.,Anbuselvi.R, (2008), Integral Solutions of ternary quadratic equation $x^{2}+y^{2}=z^{4}$, Acta Ciencia Indica, Vol XXXIV M,No.1,297-300.
15. Gopalan. M.A.,Vijayasankar.A and Manju Somanath, (2008), Integral solutions of Note on the Diophantine equation $x^{2}-y^{2}=z^{4}$, Impact J.SciTech; Vol 2(4), 149-157.
16. Gopalan.M.A and Janaki.G., (2008), Integral Solutions of Ternary quadratic equation $x^{2}-y^{2}+x y=z^{4}$, Impact Journal Vol 2(2), 71-76.
17. Gopalan.M.A and Pandichelvi.V., (2008), On ternary quadratic Diophantine equation $x^{2}+k y^{3}=z^{4}$,Pacific Asian Journal of Mathematics, Vol 2,No 1-2,57-62, Jan-Dec.
