20	urnal or P	ORIGINAL RESEARCH PAPER		Mathematics	
Indian	PARIPET	GEN FOP	ERALIZED αb*-CLOSED SETS IN OLOGICAL SPACES	KEY WORDS: gab*-closed, gab*-open, gab*-nbhd.	
S. Jeyaparvathi		i	Department of mathematics, Aditanar College of Arts and Science, Tiruchendur		
P. Selvan*			Department of mathematics, Aditanar College of Arts and Science, Tiruchendur *Corresponding Author		
ABSTRACT	In this paper a new class of generalized closed sets in topological spaces, namely generalized ab^* -closed(briefly, gab^* -closed) set is introduced. We give some basic properties and various characterizations of gab^* -open sets. Also we introduce gab^* -neighbourhood in a topological spaces and investigate some basic properties.				
1.INTRODUCTION In 1970, Levine introduced the class of generalized closed regular generalized closed [7] (briefly rg-closed) if cl(A) U					

sets. The notion of generalized closed sets has been extended and studied exclusively in recent years by many topologists. In 1996, Andrjivic gave a new type of generalized closed sets in topological spaces called b-closed sets. Later in 2012 S.Muthuvel and P.Parimelazhagan introduced b*-closed sets and investigated some of their properties.

In this paper, a new class of closed set called generalized ab*closed set is introduced. The notion of generalized ab*closed set and its different characterizations are given in this paper. It has been proved that the class of generalized ab*closed set lies between the class of b-closed set and gbclosed set.

2.Preliminaries

Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no changes of confusion. We recall the following definitions and results.

Definition 2.1. Let (X, τ) be a topological space. A subset A of the space X is said to be semi-open [9] if A cl(int(A)) and semiclosed [3] if int(cl(A)) A.

 α -open [13] if A int(cl(int(A))) and α -closed ifcl(int(cl(A))) A.

pre-open [14] if A int(cl(A)) and pre-closed if cl(int(A)) A.

b-open [16] if A⊆int(cl(A))Ucl(int(A)) and b-closed if $int(cl(A)) \cap cl(int(A)) \subseteq A.$

regular open if int(cl(A))=A and regular closed if cl(int(A))=A.

 π -open [4] if A is the union of regular open sets and π -closed if A is the intersection of regular closed sets Definition 2.2. Let (X, τ) be a topological space and A X. The b-closure(resp. preclosure, semi-closure, α -closure) of A, denoted by bcl(A) (resp .pcl(A), scl(A), acl(A)) and is defined by the intersection of all b-closed (resp. pre-closed, semi-closed, α -closed) sets containing A.

Definition 2.3. Let (X, τ) be a topological space. A subset Aof X is said to be generalized closed [8](briefly q-closed) if cl(A) U whenever A U and U is open in (X, τ) .

generalized b-closed [2] (briefly gb-closed) if bcl(A) U whenever A U and U is open in (X, τ) .

whenever A U and U is regular open in (X, τ) .

regular generalized b-closed [17](briefly rgb-closed) if bcl(A) U whenever A U and U is regular open in (X, τ) .

generalized ab-closed [15](briefly gab-closed) if bcl(A) U whenever AU and U is α -open in (X, τ)

generalized pre-regular closed [20] (briefly gpr-closed) if pcl(A) U whenever A U and U is rg-open in (X, τ) .

generalized p-closed (briefly gp-closed) if pcl(A) U whenever A U and U is open in (X, τ) .

 α -generalized closed [10] (briefly α g-closed) if α cl(A) U whenever A U and U is an open in (X, τ) .

π-generalized b-closed [6](briefly πgb-closed) if bcl(A) U whenever A U and U is π -open in (X, τ).

π-generalized pre-closed [6](briefly πgb-closed) if pcl(A) U whenever A U and U is π -open in (X, τ).

π-generalized semi-closed [6](briefly πgb-closed) if scl(A) U whenever A U and U is π -open in (X, τ).

weakly closed [19] (briefly w-closed) if $cl(A) \subseteq U$ whenever A U and U is a semi-open in (X, τ) .

weakly generalized closed [18] (briefly wg-closed) [2] if cl(int(A)) U whenever A U and U is an open in (X, τ) .

semi weakly generalized closed (briefly swg-closed) [] if scl(A) U whenever A U and U is an wg-open in (X, τ) .

w-closed [19] if cl(A) U whenever A U and U is a semi-open in (X, τ) .

w α -closed [3] if α cl(A) \subseteq U whenever A \subseteq U and U is a w-open in (Χ, τ).

 α -generalized closed [10](briefly α g-closed [2] if α cl(A) U whenever AU and U is open in (X, τ) .

 α -generalized regular closed (briefly α gr-closed [2] if α cl(A) U whenever A U and U is regular open in (X, τ) .

strongly b*-closed [21](briefly sb*-closed) if cl(int(A))) U whenever A) U and U is b-open in (X, τ) .

Volume-8 | Issue-8 | August-2019 | PRINT ISSN No. 2250 - 1991

The complements of the above mentioned closed sets are their respective open sets.

Theorem 2.4.[21]For a topological space (X, τ) , Every open set is b*-open. Every a-open set is b*-open. Every semi-open set is b*-open.

Theorem 2.5.[22] For any subset A of a topological space (X, τ) , sint $(A) = A \cap cl(int(A))$ pin $(A) = A \cap int(cl(A))$ scl $(A) = A \cup int(cl(A))$ pcl $(A) = A \cup cl(int(A))$.

Remark 2.6. Jankovic and Reilly pointed out that every singleton $\{x\}$ of a space X is either nowhere dense or pre-open. This provides another decomposition X=X1UX2, where $X1=\{x\in X/\{x\} \text{ is nowhere dense}\}$ and $X2=\{x\in X/\{x\} \text{ is preopen}\}$.

Definition 2.7. The intersection of all gb-open sets containing A is called the gb-kernel of A and it is denoted by gb-ker(A).

Lemma 2.8. For any subset A of X, X2 \cap cl(A) gb-ker(A). Remark 2.9. cl(X\A) = X\int(A)

3. Generalized ab*-closed set

Definition 3.1. A subset A of a topological space (X, τ) is called a generalized ab^* -closed set (briefly, gab^* -closed) if acl(A) U whenever A U and U is b^* -open in (X, τ) .

Theorem 3.2. For a topological space (X, τ) , Every closed set is g ab^* -closed. Every a-closed set is g ab^* -closed. Every regular closed set is g ab^* -closed. Every π -closed set is g ab^* -closed.

Proof:

Let A be a closed set. Let A U, U is b*-open in X. Since A is closed, then cl(A)=A U. But α cl (A) cl(A). Thus we have α cl (A) U whenever A U and U is b*-open. Therefore, A is a g α b*-closed set.

Let A be a α -closed set. Let A U, U is b*-open. Since A α -closed, α cl (A)=A U whenever A U and U is b*-open. Therefore, A is g α b*- closed set.

Let A be a regular closed set. Since every regular closed set is closed. Then by (I), A is gab^* -closed set.

Let A be a $\pi\text{-closed}$ set. Since every $\pi\text{-closed}$ set is closed. Then by (I), A is gab*-closed set.

Theorem 3.3. For a topological space (X, τ) , Every g ab*-closed set is gb-closed. Every g ab*-closed set is gp-closed. Every g ab*-closed set is gs-closed. Every g ab*-closed set is sg-closed. Every gab*-closed set is sg-closed.

Proof:

Let A be a gab*-closed set. Let A U, U is open. Since open set is b*-open, then U is b*-open. Since A is gab*-closed, acl(A) U. But $bcl(A) \subseteq acl(A)$. Thus, we have bcl(A) U whenever A U and U is open. Therefore, A is gb-closed set.

Let A be a g α b*-closed set. Let A U, U is open. Since open set is b*-open, then U is b*-open. Since A is g α b*-closed, α cl (A) U. But pcl(A) $\subseteq \alpha$ cl(A). Thus, we have pcl(A) U whenever A U and U is open. Therefore, A is gb-closed set.

Let A be a $g\alpha b^*$ -closed set. Let A U, U is open. Since open set is

b*-open, then U is b*-open. Since A is g α b*- closed, α cl(A) U. But scl(A) $\subseteq \alpha$ cl(A). Thus, we have scl(A) U whenever A U and U is open. Therefore, A is gs-closed set.

Let A be a gab^* -closed set. Let A U, U is semi-open. Since semiopen set is b^* -open, then U is b^* -open. Since A is gab^* -closed, acl(A) U. But $scl(A) \subseteq acl(A)$. Thus, we have scl(A) U whenever A U and U is semi-open. Therefore, A is sg-closed set.

Let A be a gab*-closed set. Let A U, U is regular-open. Since every regular open set is b*-open, then U is b*-open. Since A is gab*-closed, α cl(A) U. But bcl(A) $\subseteq \alpha$ cl(A). Thus, we have bcl(A) U whenever A U and U is regular-open. Therefore, A is rgb-closed.

Theorem 3.4. For a topological space (X, τ) ,

- l.Every g α b*- closed set is g α b- closed set.
- 2. Every g α b*-closed set is π gb-closed set.
- 3. Every g αb^* -closed set is πgp -closed set.
- 4. Every $g \alpha b^*$ -closed set is πgs -closed set.
- 5. Every $g \alpha b^*$ closed set is sgb-closed set.
- $\textbf{6.Every}\, g\, \alpha b^{\star} \text{-closed set is gpr-closed set.}$

Proof.

- 1. Let A be a g α b*- closed set. Let A U, U is α open. Since every α -open set is b*-open, then U is b*-open. Since A is g α b*-closed, α cl(A) U. But bcl(A) $\subseteq \alpha$ cl(A). Thus, we have bcl(A) U whenever A U and U is α -open. Therefore, A is g α b-closed.
- 2. Let A be a gab^* -closed set. Let A U, U is π -open. Since every π -open set is b*-open, then U is b*-open. Since A is gab^* -closed, a cl(A) U. But $bcl(A) \subseteq acl(A)$. Thus, we have bcl(A) U whenever A U and U is π -open. Therefore, A is π gb-closed.
- Let A be a g ab*- closed set. Let A U, U is π-open. Since every π-open set is b*-open, then U is b*-open. Since A is gab*-closed, acl(A) U. But pcl(A)⊆acl(A). Thus, we have pcl(A) U whenever A U and U is π-open. Therefore, A is πgp-closed.
- Let A be a gab*-closed set. Let A U, U is π-open. Since every π-open set is b*-open, then U is b*-open. Since A is g ab*-closed, acl(A) U. But scl(A)⊆acl(A). Thus, we have scl(A) U whenever A U and U is π-open. Therefore, A is πgs-closed.
- 5. Let A be a gab*-closed set. Let A U, U is semi-open. Since every semi- open set is b*-open, then U is b*-open. Since A is gab*-closed, $\alpha cl(A)$ U. But $bcl(A) \subseteq \alpha cl(A)$. Thus, we have bcl(A) U whenever A U and U is semi-open. Therefore, A is sgb-closed.
- Let A be a g αb*- closed set. Let A U, U is regular-open. Since every regular open set is b*-open, then U is b*open.Since A is gαb*-closed, αcl(A) U.But pcl(A)⊆αcl(A). Thus, we have pcl(A) U whenever A U and U is regularopen.Therefore, A is gpr-closed.

Remark 3.5. The reverse implications of the above theorems need not be true which is shown in the following examples.

Example 3.6. Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \{a, b, c\}\}$.

- 1. gab*-closed sets in (X, $\tau)$ are $\varphi,$ X, {b}, {d}, {a,b}, {b,d}, {a,b,d}, {b,c,d}.
- 2. regular-closed sets in (X, τ) are ϕ , X, {a,b}, {b,c,d}.
- 3. π -closed sets in (X, τ) are ϕ , X, {b}, {a,b}, {b,c,d}.
- 4. sg-closed sets in (X, τ) are $\phi, X, \{b\}, \{d\}, \{a,b\}, \{b,d\}, \{a,b,d\}, \{b,c,d\}.$
- 5. gb-closed sets in (X, τ) are ϕ , $X,\{a\},\{b\},\{d\},\{a,b\},\{a,d\},\{b,d\},\{c,d\},\{a,b,d\},\{b,c,d\}.$
- 6. gs-closed sets in (X, τ) are ϕ , $X,\{a\},\{b\},\{d\}, \{a,b\}, \{a,d\}, \{b,d\},\{c,d\},\{a,b,d\},\{b,c,d\}.$

- $$\label{eq:constraint} \begin{split} & \text{7. gpr-closed sets in } (X,\tau) \mbox{ are } \phi, X, \{b\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \\ & \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,c,d\}, \{a,b,d\}, \{b,c,d\}. \end{split}$$
- $\begin{array}{l} 8. & \mbox{mgp-closed sets in } (X, \tau) \mbox{ are } \phi, X, \{b\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \\ \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,c,d\}, \{a,b,d\}, \{b,c,d\}. \end{array}$

Example 3.7. Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}$.

- 1. $g \alpha b^*$ closed sets in (X, τ) are $\phi, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}.$
- 2. closed sets in (X, τ) are $\phi,$ X, {a},{d}, {a,d}, {c,d}, {a,c,d},{b,c,d}.
- 3. sg b-closed sets in (X, τ) are $\phi, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{b,c\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}.$
- rgb-closed sets in (X, τ) are φ, X, {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}.
- 5. g α b -closed sets in (X, τ) are ϕ , X, {a}, {c}, {d}, {a,c}, {a,d}, {b,c}, {c,d}, {a,c,d}, {b,c,d}.
- gp-closed sets in (X, τ) are φ, X, {a}, {c}, {d}, {a,c}, {a,d}, {b,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d}.
- 7. g-closed sets in (X, τ) are ϕ , X, {a}, {d}, {a,d}, {b,d}, {c,d},{a,b,d},{a,c,d},{b,c,d}.
- 8. rg-closed sets in (X, τ) are ϕ , X, $\{a\}$, $\{d\}$, $\{a,b\}$, $\{a,c\}$, $\{a,d\}$, $\{b,d\}$, $\{c,d\}$, $\{a,b,c\}$, $\{a,b,d\}$, $\{a,c,d\}$, $\{b,c,d\}$.
- 9. $\label{eq:generalized} \begin{array}{l} \mbox{Igs-closed sets in } (X,\tau) \mbox{ are } \phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \\ \mbox{ } \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}. \end{array} \right.$
- $$\label{eq:linear} \begin{split} &11. \ \mbox{Igb-closed sets in } (X,\tau) \ \mbox{are } \phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \\ & \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}. \end{split}$$

Remark 3.8. The gab*-closed sets are independent from agclosed set, g-closed set, rg-closed set, wg-closed set, swg-closed set`

Remark 3.9. From the above results, we have the following implications diagrams.

4.Characterization

Theorem 4.1. If a set A is gab*-closed in (X,τ) , then $\alpha cl(A)\setminus A$ contains no non empty b*-closed sets in (X,τ) .

Proof:

Let F be a b*-closed subset of X such that F $\alpha cl(A) \setminus A$. Then F $\alpha cl(A)$ (X\A). That implies, F $\alpha cl(A)$ and F (X\A). Then A X\F and X\F is b*-open in (X, τ). Since A is gab*-closed in X, $\alpha cl(A)$ X\F, F X\ $\alpha cl(A)$. Thus F $\alpha cl(A) \cap (X \setminus acl(A)) = \phi$. Hence $\alpha cl(A) \setminus A$ does not contain any non-empty b*-closed sets.

Theorem 4.2. If a subset A is gab^* -closed set in (X, τ) and A B acl(A), then B is also a gab^* -closed set.

Proof: Let A be a g α b*- closed set and B be any subset of X such that A B α cl(A). Let U be b*-open in (X, τ) such that B U. Then A U. Also since A is g α b*- closed, α cl(A) U. Since B α cl(A), α cl(B) α cl (α cl(A))= α cl(A) U. This implies, α cl(B) U. Thus B is a g α b*-closed set.

Definition 4.3. Let (X, τ) be a topological space and Y be a subspace of X. Then the subset A of Y is b*-open in Y if A=G Y, where G is b*-open in X.

Theorem 4.4. Let $A \subseteq Y \subseteq X$ and suppose that A is gab^* -closed in X then A is gab^* -closed relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is a gab*-closed set in X. To prove that A is gab*-closed set relative to Y. Let us assume that $A \subseteq Y \cap U$, where U is b*-open in X. Since A is gab*-closed set in X, then $\alpha cl(A) \subseteq U$. That implies $Y \cap \alpha cl(A) \subseteq Y \cap U$, where $Y \cap \alpha cl(A)$ is the α -closure of A in Y and $Y \cap U$ is b*-open in Y. Therefore $\alpha cl(A) \subseteq Y \cap U$ in Y. Hence, A is gab*-closed set relative to Y.

Theorem 4.5. Let A be any g α b*-closed set in (X, τ). Then A is α -closed in (X, τ) iff α cl(A)\A is b*-closed.

Proof: Necessity: Since A is α -closed set in (X, τ) , $\alpha cl(A)=A$. Then $\alpha cl(A)\setminus A=\phi$, which is a b*-closed set in (X, τ) . Sufficiency: Since A is $g\alpha b^*$ -closed set in (X, τ) , by Theorem 4.1, $\alpha cl(A)\setminus A$ does not contains any non-empty b*-closed set. Therefore, $\alpha cl(A)\setminus A=\phi$. Hence $\alpha cl(A)=A$. Thus A is α -closed set in (X, τ) .

Theorem 4.6. For every element x in a space X, $X-{x}$ is $g\alpha b^*$ -closed or b^* -open.

Proof: Case (I): Suppose $X-\{x\}$ is not b*-open. Then X is the only b*-open set containing $X-\{x\}$. This implies $\alpha cl(X-\{x\}) \subseteq X$. Hence $X-\{x\}$ is gab*-closed.

case (ii):Suppose X-{x} is not gab*-closed. Then there exists a b*-open set U containing X-{x} such that $\alpha cl(X-{x})$ does not contained in U. Now $\alpha cl(X-{x})$ is either X-{x} or X. If $\alpha cl(X-{x})=X-{x}$, then X-{x} is α -closed. Since every α -closed set is gab^* -closed, X-{x} is gab^* -closed, which is a contradiction. Therefore $\alpha cl(X-{x})=X-{x}$ is gab^* -closed. Then by case (i), X-{x} is gab^* -closed. There is a contradiction to our assumption. Hence X-{x} is b^* -open.

Theorem 4.7. If A is both b*-open and gab^* -closed set in X, then A is a-closed set

Proof: Since A is b*-open and gab*-closed in X, $\alpha cl(A) \subseteq A$. But always $A \subseteq \alpha cl(A)$. Therefore, $A = \alpha cl(A)$. Hence A is a α -closed set.

Definition 4.8. The intersection of all b*-open sets containing A is called the b*-kernel of A and it is denoted by b*-ker(A).

Theorem 4.9. A subset A of X is $g\alpha b^*$ -closed iff $\alpha cl(A) \subseteq b^*$ -ker(A).

Proof: Necessity: Let A be a g αb^* - closed subset of X and $x \in \alpha cl(A)$. Suppose $x \notin b^*$ -ker(A). Then there exists a b^* -open set U containing A such that $x \notin U$. Since A is $g\alpha b^*$ -closed set, then $\alpha cl(A) \subseteq U$. This implies that, $x \notin \alpha cl(A)$, which is a contradiction to $x \in \alpha cl(A)$. Therefore $\alpha cl(A) \subseteq b^*$ -ker(A).

Sufficiency: Suppose $\alpha cl(A) \subseteq b^*$ -ker(A). If U is any b^* -open set containing A, then b^* -ker(A) \subseteq U. That implies, $\alpha cl(A) \subseteq$ U. Hence A is $g\alpha b^*$ -closed in X.

Remark 4.10. For any subset A of X, gb-ker(A) $\subseteq b$ *-ker(A).

Theorem 4.11. For any subset $A \text{ of } X, X2 \cap \alpha cl(A) \subseteq b^*-ker(A)$.

Proof: Since $\alpha cl(A) \subseteq cl(A)$, then $X2 \cap \alpha cl(A) \subseteq X2$ cl(A). Then

www.worldwidejournals.com

Volume-8 | Issue-8 | August-2019 | PRINT ISSN No. 2250 - 1991

by Lemma 2.8 and Remark $4.10, X2 \cap \alpha cl(A) \subseteq b^*-ker(A)$.

Theorem 4.12. A subset A of X is gab*-closed if and only if $X1\cap acl(A) \subseteq A$.

Proof: Necessity: Suppose that A is $g\alpha b^*$ -closed and $x \in X1 \cap \alpha cl(A)$. Then $x \in X1$ and $x \in \alpha cl(A)$. Since $x \in X1$, then $int(cl(\{x\})) = \emptyset$. That implies, $cl(int(cl(\{x\}))) = \emptyset$. Therefore $\{x\}$ is α -closed. Then $\{x\}$ is b^* -closed. If x does not belongs to A, then $U=X-\{x\}$ is a b^* -open set containing A and so $\alpha cl(A) \subseteq U$. Since $x \in \alpha cl(A)$, $x \in U$. This is a contradiction to x not in U. Hence $X1 \cap \alpha cl(A) \subseteq A$.

Sufficiency: Let $X1 \cap acl(A) \subseteq A$. Then $X1 \cap acl(A) \subseteq b^*$ -ker(A). Now, $acl(A) = X \cap acl(A) = (X1 \cup X2) \cap acl(A) = (X1 \cap acl(A)) \cup (X2 \cap acl(A)) \subseteq b^*$ -ker(A). Then by Theorem 4.9, A is gab*-closed.

Remark 4.13. Union of any two $g\alpha b^*$ -closed sets in (X, τ) is also a $g\alpha b^*$ -closed set`

Proof. Let A and B be two $g\alpha b^*$ -closed sets in a topological space (X, τ) . Let U be any b^* -open set containing AUB. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $g\alpha b^*$ -closed sets, $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. Now, $\alpha cl(A \cup B) = \alpha cl(A) \cup \alpha cl(B) \subseteq U$ and hence $A \cup B$ is $g\alpha b^*$ -closed set.

Theorem 4.14. Arbitrary intersection of gab^* -closed sets is gab^* -closed.

Proof. Let {Ai} be the collection of gab^* -closed sets of X. Let $A = \cap Ai$. Since $A \subseteq Ai$, for each i, then $acl(A) \subseteq acl(Ai)$. That implies, $X1 \cap acl(A) \subseteq X1 \cap acl(Ai)$. Since each Ai is gab^* -closed, then by Theorem 4.12, $X1 \cap acl(Ai) \subseteq Ai$, for each i. Now, $X1 \cap acl(A) = X1 \cap acl(\cap Ai) \subseteq \cap (X1 \cap acl(Ai)) \subseteq \cap Ai = A$. Again by Theorem 4.12, A is gab^* -closed.

Remark 4.15. The set of all gab*-closed sets in a topological space X, form a topology on X.

Theorem 4.16. Let A be a $g\alpha b^*$ -closed in X. Then

- 1. sint(A) is gab*-closed.
- If A is regular open, then pint(A) and scl(A) are also gab*closed.
- 3. If A is regular closed, then pcl(A) is also gab^* -closed.

Proof: Let A be a $g\alpha b^*$ -closed set of X.

- Since cl(int(A)) is closed, then by Theorem 3.2, cl(int(A)) is gab*-closed, sint(A) is closed.
- Suppose A is regular open, then int(cl(A))=A. By Lemma 2.5, scl(A)=A. Since A is gab*-closed, then scl(A) is gab*closed. Similarly pint(A) is gab*-closed.
- Suppose A is regular closed, cl(int(A))=A. Then by Lemma 2.5, pcl(A)=A, and hence gab*-closed.

5. Generalized ab*-open

Definition 5.1. A subset A of (X, τ) is said be generalized αb^* -open (briefly $g\alpha b^*$ -open) set if its complement X\A is $g\alpha b^*$ -closed in X. The family of all $g\alpha b^*$ -open sets in X is denoted by $g\alpha b^*$ -O(X).

Theorem 5.2. Let (X, τ) be a topological space and $A \subseteq X$. Then A is a gab*-open if and only if $F \subseteq aint(A)$, whenever $F \subseteq A$ and F is b*-closed.

Proof: Necessity: Let A be a gab^* -open set in (X, τ) . Let $F \subseteq A$ and F is b^* -closed. Then X\A is gab^* -closed and it is contained in the b^* -open set X\F. Therefore $acl(X \setminus A) \subseteq X \setminus F$. This implies that $X \setminus aint(A) \subseteq X \setminus F$. Hence $F \subseteq aint(A)$.

Sufficiency: If F is b*-closed set such that $F \subseteq aint(A)$ whenever $F \subseteq A$. It follows that $X \setminus A \subseteq X \setminus F$ and $X \setminus aint(A) \subseteq X \setminus F$. Therefore $acl(X \setminus A) \subseteq X \setminus F$. Hence $X \setminus A$ is gab^* -closed and hence A is gab^* -open.

Theorem 5.3. If a set A is gab*-open and $B \subseteq X$ such that $aint(A) \subseteq B \subseteq A$, then B is gab*-open.

Proof: If α int(A) \subseteq B \subseteq A then, X \land A \subseteq X \land B \subseteq X \land int(A). That is, X \land A \subseteq X \land B \subseteq α cl(X \land A). Since X \land A is g α b*-closed, then by

Theorem 2.2, $X \ b \ is \ g \ a \ b^*$ -closed and hence $B \ is \ g \ a \ b^*$ -open.

Theorem 5.4. If a subset A is gab*-open in X and G is b*-open in X with $aint(A) \cup (X \setminus G) \subseteq G$ then X = G.

Proof: Suppose that G is b*-open and α int(A) \cup (X\G) \subseteq G. This implies, X\G \subseteq (X\ α int(A)) A= α cl(X\A)\(X\A). Since X\A is gab*-closed and X\G is b*-closed, then by Theorem 4.1, X\G= ϕ .Hence X=G.

Remark 5.5. Union of gab*-open sets is gab*-open in a topological space X.

Remark 5.6. Intersection of g α b*-open sets is also a g α b*-open in X.

Theorem 5.7. If B is g α b*-open and α int(B) \subseteq A, then A \cap B is g α b*-open.

Proof: Suppose B is gab^* -open and $aint(B) \subseteq A$. Then $aint(A \cap B) \subseteq A \cap B \subseteq B$. By Theorem 5.3, $A \cap B$ is gab^* -open.

6.gab*-neighbourhood

Definition 6.1. Let X be a topological space and let $x \in X$. A subset N of X is said to be a $g\alpha b^*$ -neighbourhood (shortly, $g\alpha b^*$ -nbhd) of x if there exsits a $g\alpha b^*$ -open set U such that $x \in U \subseteq N$.

Definition 6.2. A subset N of a space X, is called a $g\alpha b^*$ -nbhd of $A \subseteq X$ if there exists an $g\alpha b^*$ -open set U such that $A \subseteq U \subseteq N$.

Theorem 6.3. Every nbhd N of $x \in X$ is a $g\alpha b^*$ -nbhd of x.

Proof: Let N be a nbhd of point $x \in X$. Then there exists an open set U such that $x \in U \subseteq N$. Since every open set is $g \alpha b^*$ -open, U is a $g \alpha b^*$ -open set such that $x \in U \subseteq N$. This implies, N is a $g \alpha b^*$ -nbhd of x.

Remark 6.4. The converse of the above theorem need not be true which is shown in the following example.

Example 6.6. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{b,c,d\} X\}$. In this topological space (X, τ) , $g\alpha b^*-O(X) = \{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c\}, \{d\}\}$. The set $\{b,d\}$ is the $g\alpha b^*$ -nbhd of d, since $\{b,d\}$ is $g\alpha b^*$ -open set such that $d \in \{b,d\} \subseteq \{b,d\}$. However, the set $\{b,d\}$ is not a nbhd of the point d.

Remark 6.7. Every gab^* -open set is a gab^* -nbhd of each of its points.

Theorem 6.8. If F is a gab*-closed subset of X and $x \in X \setminus F$, then there exists a gab*-nbhd N of x such that $N \cap F = \phi$

Proof: Let F be gab*-closed subset of X and $x \in X \setminus F$. Then X \F is gab*-open set of X. By Theorem, X \F contains a gab*-nbhd of each of its points. Hence there exists a gab*-nbhd N of x such that $N \subseteq X \setminus F$. Hence $N \cap F = \phi$.

Definition 6.9. The collection of all gab^* -neighborhoods of $x \in X$ is called the gab^* -neighborhood system of x and is denoted by gab^* -N(x).

Theorem 6.10. Let (X, τ) be a topological space and $x \in X$. Then

- (I) $g \alpha b^*-N(x) \neq \phi$ and $x \in each member of g \alpha b^*-N(x)$
- (ii) If $N \in g\alpha b^*-N(x)$ and $N \subseteq M$, then $M \in g\alpha b^*-N(x)$.
- (iii) Each member $N \in g\alpha b^*-N(x)$ is a superset of a member $G \in g\alpha b^*-N(x)$ where G is a $g\alpha b^*$ -open set.

Proof:

- (i) Since X is gab*-open set containing x, it is a gab*-nbhd of every x∈X. Thus for each x∈X, there exists atleast one gab*-nbhd, namely X. Therefore, gab*-N(x)≠Ø. Let N∈gab*-N(x). Then N is a g ab*- nbhd of x. Hence there exists a g ab*-open set G such that x∈G ⊆ N, so x ∈ N. Therefore x∈every member N of gab*-N(x).
- (ii) If $N \in gab^*-N(x)$, then there is a gab^* -open set G such that $x \in G \subseteq N$. Since $N \subseteq M$, M is gab^* -nbhd of x. Hence $M \in gab^*-N(x)$.
- (iii) Let $N \in g\alpha b^*-N(x)$. Then there is a $g\alpha b^*$ -open set G, such that $x \in G \subseteq N$. Since G is $g\alpha b^*$ -open and $x \in G$, G is $g\alpha b^*$ -nbhd of x. Therefore $G \in g\alpha b^*-N(x)$ and also $G \subseteq N$.

REFERENCES

- S.P. Arya and T. Nour, Characterizations of S- nomal spaces, Indian J. Pure. Appl.Math., 21(8)(1990), 717-719.
- [2] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets. Bull. Malays. math. Sci. Soc(2) 32(1) (2009), 19-30.
 [3] S. S. Benchalli, P.G. Patil and T. D. Rayangaudar, wα-closed sets in topological
- [4] V.Zaitsav, On certain classes of topological spaces and their
- [4] V.Zatsav, On Certain Classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178 (1968), 778-779
 [5] N. Biswas, On characterizations of semi- continuous functions, Atti. Accad.
- [6] A.K.Al-Obiadi, n-generalized b-closed sets in topolosical spaces, Ibn Al-
- [7] M.M. Obada, ingeneralized closed sets in Optionical Spaces, in The Haithan J.for pure and appl. Sci., 24(3)(2001).
 [7] N.Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook
- Math.J.,33(2) (1993),211-219.
 N. Levine, Generalized closed sets in topology, Rand. Circ. Mat. Palermo,
- [9] In John State Construction of the second seco
- Mat.Monthly 70(1)(1963),36-41.
 H. Maki, R. Devi and K. Balachandran, Associated Topologies of Generalized
- closed sets and Generalized closed sets Mem. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [11] H. Maki, J. Umehara and T. Noiri, Every topological spaces in pre-T1/2, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 17(1996), 33-42.
- [12] N. Nagaveni, Studies on Generalizations of Homeomophisms in Topological spaces, Ph. D., Thesis, Bharathiar University, Coim-batore (1999).
- [13] O. Njastad, Some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [14] A.S.Mashhour, M.E.Abd. El-.Monsef, Ei-Deeb.S.N., On Pre continuous and weak Pre-continuous mapping, Proc. Math., Phys. Soc. Egypt, 53 (1982), 47-83.
- [15] L.Vinayagamoorthi, N.Nagaveni, On Generalized b-closed sets, proceeding ICMD-Allahabad, Puspha Publication Vol. 1, 2010-11.
- [16] D.Andrijevic, On b-open sets, Mat. Vesnik 48(1996), 59-64.
- [17] K.Mariappa and S.Sekar, On Regular generalized b-closed sets, Int. Journal of Math. Analysis, Vol.7, (2013), 613-624.
 [18] P. Sundaram, and N. Navalagi, On weakly Generalized continuous maps,
- [16] F. Sundaram, and N. Navalagi, On weakly Generalized commuous maps, weakly Generalized closed maps andweakly Irrosolute maps, Far East. J. Math Sci., 6, 1998.
- [19] P. Sundaram and M. Shrik John, On w- closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [20] Y.Gnanambal, On generalized pre-regular closeds in topological spaces, Indian J.Pure Appl. Math 28 (1997), 351-360.
- [21] A.Poongothai and P.Parimelazhagan, sb*-closed sets in a topological spaces, Int. Journal of Math. Analysis 6(47), (2012), 2325-2333.
- [22] M.Anitha and P.Thangavelu, Generalized closed sets in submaximal spaces, Antarctica J.Math., 4(1) (2007), 99-108.