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T This paper initiate an automatic fuzzy system design method that uses a genetic algorithm and integrates three design 

stages; our method determines membership functions, the number of fuzzy rules, and the rule consequent parameters at 
the same time because these design stages may not be independent, it is important to consider e method includes a 
genetic algorithm and a penalty strategy that favors systems with fewer rules. The proposed method is applied to the 
classic inverted pendulum control problem . Now a-days researchers are taking keen interest towards integrating fuzzy 
systems with learning and adaptation capabilities. The two well known methodologies to augment fuzzy systems along 
with learning and adaptation procedures are neural fuzzy systems and genetic fuzzy systems.
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1.INTRODUCTION
Fuzzy systems have become popular components of 
consumer products because they are inexpensive to 
implement, able to solve difficult non-linear control 
problems, and exhibit robust behavior. Designers are 
especially attracted to fuzzy systems because fuzzy systems 
allow them to capture domain knowledge quickly using rules 
that contain fuzzy linguistic terms.These attributes allow 
products with embedded fuzzy systems to be both cost 
effective and high performance. Fuzzy systems have been 
successfully implemented to problems related to 
classification, modeling and control and wide range of 
applications. In most of the cases the key for the success is the 
ability of the fuzzy systems to incorporate human expert 
knowledge.

While it is easy to describe human knowledge with fuzzy 
linguistic terms, it is not easy to define the terms by 
membership functions. In addition, fuzzy system design 
requires two other stages: determining the number of rules 
and determining the rule-consequent parameters.

This paper proposes an automatic fuzzy system design 
method that uses a Genetic Algorithm and integrates three 
design stages; our method determines membership functions 
,the number of fuzzy rules, and the rule-consequent 
parameters at the same time. As a sample fuzzy system, we use 
the Takagi-Sugeno-Kang (TSK) fuzzy model [1]. Rules in a TSK 
fuzzy model use traditional fuzzy variables for antecedents. 
However, the consequent values are computed by summing 
weighted combinations of the input values. We have 
formulated a TSK fuzzy model representation that 
parameterizes membership function shape and position and 
rule-  consequent  parameters. By combining our 
representation with the target application's boundary 
conditions, we can represent fuzzy systems with different 
numbers of rules. A genetic algorithm operation, this 
representation and optimizes the fuzzy system parameters 
with respect to performance and resource requirements. We 
chose a genetic algorithm optimization technique because 
genetic algorithms because genetic algorithms are robust, 
search any points simultaneously, and able to avoid local 
minima.In the following sections we briefly review genetic 
algorithms and automatic fuzzy system design research. Next 
we discuss our TSK fuzzy model, how we incorporated genetic 
algorithms into the design process, and parameters of our 
design method.We demonstrate our method by deriving a 
four rule fuzzy system that balances an inverted pendulum. 
We conclude by comparing the performance of our controller 
with a controller derived. 

2. REVIEW
2.1 Genetic algorithms
A genetic algorithm is a probabilistically guided optimization 
technique modeled after the mechanics of genetic evolution. 
Unlike many classical optimization techniques, genetic 
algorithms do not rely on computing local derivatives to 
guide the search process. Genetic algorithms also include 
random elements,which helps avoid getting trapped in local 
minima.Genetic algorithms explore a population of solutions 
in parallel.The size of the population is a free parameter, 
which trades off coverage of the search space against the time 
required to compute the next generation. Each solution in the 
population is coded as a binary string or gene, and a 
collection of genes forms a generation. A new generation 
evolves by performing genetic operations, such as 
reproduction, crossover, and mutation, on genes in the current 
population and then placing the products into the new 
generation.

In a simple genetic algorithm, operations are performed in 
the following order; reproduction, crossover, and then 
mutation. Reproduction involves selecting two parent genes 
f rom the cur rent  populat ion. Select ion is  based 
probabilistically on a gene's fitness value; the higher the 
fitness of a gene, the more likely it can reproduce. After 
selecting two parents, crossover is performed according to a 
crossover probability. If crossover is to be performed, 
offspring are constructed by copying portions of parent 
genes designated by random crossover points (single point 
crossover shown in Figure 1).

Figure 1: Genetic operations: (a) cross over (b) mutation

Otherwise, an offspring copies its entire gene from one of the 
parents. As each bit is copied from parent to offspring, the bit 
has the probability of flipping, or mutating. Mutation is 
believed to help reinject any information that may have been 

Kuldeep Kumar 
Katiyar

Department of Computer Science & Engineering, Faculty of Engineering & 
Technology, Rama University Uttar Pradesh,Kanpur,India

Sunil Awasthi*
Department of Computer Science & Engineering, Faculty of Engineering & 
Technology, Rama University Uttar Pradesh,Kanpur,India *Corresponding 
Author

PARIPEX - INDIAN JOURNAL OF RESEARCH Volume-8 | Issue-6 | June-2019 | PRINT ISSN No. 2250 - 1991

236 www.worldwidejournals.com



lost in previous generations [3].Variations of these operators 
are discussed in [2].

2.2 Genetic-based learning approaches considering 
different model structures:
Improvements in linguistic fuzzy modeling can be  
accomplished to make learning and/or model structure more 
Fexible. Three possibilities to relax the model structure using 
a GFS are as follows:
Ÿ Use of double-consequent fuzzy rules,that allows the 

model to present rules such that each combinations of 
antecedents may have two consequents associated when 
it improves the model accuracy. The GA acts as a genetic 
method to get a cooperative and compact set of fuzzy 
rules.

Ÿ Consideration of weighted fuzzy rules in which an 
importance factor (weight) is considered for each rule. By 
means of an evolutionary technique, the way in which 
these rules interact with their neighbor ones.

Ÿ , the Genetic selection with hierarchical knowledge bases 
structure of the KB of FRBSs is extended in a hierarchical 
way. Linguistic rules defined over linguistic partitions of 
different granularity levels provide additional flexibility, 
and thus improve the model accuracy in those regions in 
which the usual non-hierarchical models demonstrate 
poor performance. This type of improvement is the 
starting point for the development of different 
hierarchical system of linguistic rules learning 
methodologies, which are considered as a refinement of 
the basic linguistic fuzzy models. These methodologies 
have been thought as a refinement of simple linguistic 
models which, preserving their descriptive power, 
introduces small changes to increase their accuracy. A GA 
is used to get a compact set of hierarchical rules.

2.3 Genetic-based machine learning approaches:
GFSs with specific  combination of evolution and  bio-
inspired models have been developed. For instance, genetic 
schemes inspired on the virus theory of evolution have been 
derived to learn TSK fuzzy rule sets , including genetic 
recombination in bacterial genetics and DNA coding 
schemes .

2.4 Analyzing the Evolutionary Fuzzy Systems' models:
The essential part of FRBSs is a set of IF-THEN fuzzy rules 
(traditionally linguistic values), whose antecedents and 
consequents are composed of fuzzy statements, related to 
with the dual concepts of fuzzy implication and the 
compositional rule of inference.Specifically, an FRBS is 
composed of a knowledge base (KB), that includes the 
information in the form of those IF-THEN fuzzy rules,i.e. the 
RB, and the correspondence of the fuzzy values, known as DB. 
It also comprises of an inference engine module that includes 
a fuzzification interface, an inference system, and a 
defuzzification interface.EFSs are a family of approaches that 
are built on top of FRBSs, whose components are improved by 
means of an evolutionary learning/optimization process as 
depicted in Fig.2. This process is designed for acting or 
tuning the elements of a fuzzy system in order to improve its 
behavior in a particular context. Traditionally ,this was 
carried out by means of GAs, leading to the classical term of 
Genetic Fuzzy Systems. In this paper, we consider a 
generalization of the former by the use of EAs [4]. Taking this 
into account, the first step in designing an EFS is to decide 
which parts of the fuzzy system are subjected to optimization 
by the EA coding scheme. Hence, EFS approaches can be 
mainly divided into two types of processes: tuning and 
learning. Additionally, we must make a decision whether to 
just improve the accuracy/precision of the FRBS or to achieve 
a tradeoff between accuracy and interpretability (and/or 
other possible objectives) by means of a MOEA. Finally, we 
must stress that new fuzzy set representations have been 
designed, which implies a new aspect to beevolved in order 
to take the highest advantage of this approach.

Fig. 2. Integration of an EFS on top of an FRBS [5].

3.EXPERIMENTAL ENVIRONMENT 
The goal of our work is to develop an automatic fuzzy system 
design that uses minimal knowledge of the system to be 
controlled. As a sample fuzzy system, we chose the TSK fuzzy 
model, which is widely used in actual applications. In this 
section we first introduce our TSK fuzzy model representation 
used in our experiments. Second we present the inverted 
pendulum application used to illustrate our technique. Lastly 
we present our method for evaluating a fuzzy system's 
performance in our application context.

The system proposed by Takagi, Sugeno, and Kang [6] 
(shortly called TSK) differs from the linguistic one in the use of 
a different consequent structure. While linguistic rules 
consider a linguistic variable in the consequent, TSK-type 
fuzzy rules are based on representing the output variables as 
polynomial functions of the input variables, i.e.  IF X  is A  1 1

and………. and X  is A   THEN Y  = p (X ,……,X ) and……….. n n 1 1 1 n

and Y  = p (X ,………,X ) with p (.) being the polynomial m m 1 n j
thfunction defined for the j  output variable. Using this fuzzy 

rule structure, the human interpretation on the action 
suggested by each rule is garbled but, on the contrary, the 
approximation capability is significantly increased. For this 
reason, TSK-type FRBSs are very useful in PFM.

4.EXPERIMENTAL RESULTS
Our method combines a genetic algorithm, a penalty strategy, 
and unconstrained membership function overlap to 
automatically design fuzzy systems. In this section, we present 
results of our method applied to the inverted pendulum 
problem.In our experiments, we used a genetic algorithm 
with two point crossover and mutation operators. In this 
proposal the major focus would be on the following issues:

1. Effective Interpretable Encoding Scheme for the Fuzzy 
systems in Evolutionary Environment.

2.  Consideration of Interpretability enhancement 
maintaining  competitive accuracy.

Fuzzy reasoning builds this understanding into the process 
rather than tacking it onto the end. Fuzzy logic can model 
nonlinear functions of arbitrary complexity. You can create a 
fuzzy system to match any set of input-output data. Fuzzy logic 
can be blended with conventional control techniques.

5.CONCLUSIONS AND FURTHER RESEARCH
We have proposed a method for automatically designing 
complete fuzzy systems. Our method uses a genetic algorithm 
and a penalty strategy to determine membership function 
shape and position, number of fuzzy rules, and consequent 
parameters simultaneously. Our experimental results 
demonstrate the practicality of our method, by producing 
systems that perform comparably to a system produced by 
another method.Other extensions to this work that need to be 
explored include applying this method to more complex 
tasks, directly comparing results with a sequential method, 
applying this method to other types of fuzzy systems, and 
eliminating unnecessary rules by considering overlap. This 
work presents a new methodology (HILK) for building 
knowledge bases with a good balance between accuracy and 
interpretability. 
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