ORIGINAL RESEARCH PAPER

CENTERED HEXAGONAL GRACEFUL LABELING OF N-STAR GRAPH

Mathematics

KEY WORDS: Centered hexagonal numbers, centered hexagonal graceful labeling, centered hexagonal graceful graph.

A. Ramalakshmi

M. P. Syed Ali
Nisaya* Nisaya*

Research scholar, Department of Mathematics, The M.D.T. Hindu college, Tirunelveli-627010,Tamilnadu, India.

Assistant Profesor, Department of Mathematics,The M.D.T. Hindu college, Tirunelveli-627010, Tamilnadu,India. *Corresponding Author graceful labeling of a graph is an one to one function $t: V(G) \rightarrow\left(0,1,2, \ldots, D_{q}\right\}$ that induces a bijection $f^{*}: E(G) \rightarrow\left\{D_{1}, D_{2}, \ldots, D_{q}\right\}$ of the edges of defined by $f^{*}(()) \mid f(u)-f(v), \forall e=u v \in E(G)$. The graph which admits such a labeling is called a centered hexagonal graceful graph. In this paper, we prove that n-star graph is a centered hexagonal graceful graph.

1. INTRODUCTIONAND DEFINITIONS

The graphs considered in this paper are finite, undirected and without loops or multiple edges. Let $G=(V, E)$ be a graph with p vertices and q edges. Terms not defined here are used in the sense of Harary [2]. For number theoretic terminology [1] is followed.

A graph labeling is an assignment of integers to the vertices or the edges or both subject to certain conditions. If the domain of the mapping is the set of vertices (edges/both) then the labeling is called a vertex (edge/ total) labeling.

There are several types of graph labeling and a detailed survey is found in [3]. In 1967, Rosa [5] presented four hierarchically related labeling of graphs,which he named α, β, σ and ρ valuations. In $1972, \beta$ valuation had been called graceful labeling by Golomb [4]. Ramesh and Syed Ali Nisaya [6] introduced some more polygonal graceful labeling of path .

Definition 1.1: The star graph $K_{1, n}$ of order $n+1$ is a tree on n edges with one vertex having degree n and other vertices having degree 1 .

Definition 1.2: The - star G is the disjoint union of $K_{1 a_{9},}, K_{1, p_{2}, \ldots, K_{1 e_{1}}}$ where $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers and $K_{1, a,}$ is a star of length a_{i} for $1 \leq i \leq n$ We denote it by $K_{1, a_{1}} \cup K_{1, a_{2}} \cup \ldots \cup K_{1, a_{n}}$ Here G has $a_{1}+a_{2}+\ldots+a_{n}+n$ vertices and $a_{1}+a_{2}+\ldots+a_{n}$ edges

Definition 1.3: Let G be a (p, q) graph. Let $V(G) E(G)$ denote the vertex set and the edge set of G respectively. A one to one function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ is called a graceful labeling of G if the induced edge labeling $f^{*}: E(G) \rightarrow\{1,2, \ldots, q\}$ defined by $f^{*}(e)=|f(u)-f(v)|$, for eachedgee $e=w$ of G is also one to one. A graph Gpossessing graceful labeling is called a graceful graph.

Definition 1.4: A centered hexagonal number is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center in successive hexagonal layers. The $n^{t h}$ centered hexagonal number is found to be $D_{n}=n^{3}-(n-1)^{3}=3 n(n-1)+1$ The first few centered hexagonal numbers are $1,7,19,37,61,91,127$, $169,217,271,331,397$ etc.

Definition 1.5: A centered hexagonal graceful labeling of a graph G is an one to one function $f: V(G) \rightarrow\left\{0,1,2, \ldots, D_{q}\right\}$ that induces a bijection $f^{*}: E(G) \rightarrow\left\{D_{1}, D_{2}, \ldots, D_{q}\right\}$ of the edges of G defined by $f^{*}(e)=|f(u)-f(v)|, \forall e=u v \in E(G)$ The graph which admits such a labeling is called a centered hexagonal graceful graph

2. MAIN RESULTS

Now, we prove that the n-star is a centered hexagonal graceful graph. First, we prove the following three lemmas.

Lemma 2.1: The star graph $n K_{1, n}$ is a centered hexagonal graceful graph for all $1 \geq n$.

Proof: Note that the graph $K_{1, n}$ has $(n+1)$ vertices and n edges. Let \boldsymbol{u} www.worldwidejournals.com
be the unique vertex in one partition of $K_{1, n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the n vertices in the other.

Define $f: V\left(K_{1, n}\right) \rightarrow\left\{0,1,2, \ldots, D_{n}\right\}$ as follows.
$f(u)=0$
$f\left(u_{i}\right)=3 i^{2}-3 i+1$ where $1 \leq i \leq n$

Clearly f is one to one and the edge values are $D_{1}, D_{2}, \ldots, D_{n}$. Hence $K_{1, n}$ is a centered
hexagonal graceful graph.
Lemma 2.2: The 2-star graph is a centered hexagonal graceful graph Proof: Let $G=(V, E)$ be a 2 -star $K_{1, a,} \cup K_{1, a,}$ for all $a_{1}, a_{2} \geq 1$ with the vertex set
$V=\left\{u_{10}, u_{20}, u_{11}, u_{12}, \ldots, u_{199}, u_{21}, u_{22}, \ldots, u_{2 a}\right\}$ and the edge set
$E=\left\{u_{10} u_{1 j}: 1 \leq j \leq a_{1}\right\} \cup\left\{u_{20} u_{2 j}: 1 \leq j \leq a_{2}\right\}$. Then G has $a_{1}+a_{2}+2$ vertices and
$a_{1}+a_{2}$ edges. Take $a_{1}+a_{2}=m$
Define $f: V(G) \rightarrow\left\{0,1,2, \ldots, D_{m}\right\}$ as follows.
$f\left(u_{i 0}\right)=i-1$, where $i=1,2$
$f\left(u_{1 j}\right)=3\left(m^{2}-2 m j+j^{2}+m-j\right)+1$, where $1 \leq j \leq a_{1}$
$f\left(u_{2 j}\right)=3\left(m^{2}-2 a_{1} m-2 j m+a_{1}^{2}+2 a_{1} j+j^{2}+m-a_{1}-j\right)+2$, where $1 \leq j \leq a_{2}$

We shall prove that G admits centered hexagonal graceful labeling. From the definition, it is clear that $\max _{f(V(G)} f(v)$ is D_{m} and also $f(v) \in\left\{0,1,2, \ldots, D_{m}\right\}$.

Also from the definition, all the vertices of G have different labeling. Hence f is one to one

It remains to show that the edge values are of the form $\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$

The induced edge function $f^{*}: E(G) \rightarrow\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ is defined as follows.
$f^{*}\left(u_{10} u_{1 j}\right)=3\left(m^{2}-2 m j+j^{2}+m-j\right)+1$, where $1 \leq j \leq a_{1}$
$f^{*}\left(u_{20} u_{2 j}\right)=3\left(m^{2}-2 a_{1} m-2 j m+a_{1}{ }^{2}+2 a_{1} j+j^{2}+m-a_{1}-j\right)+1$, where $1 \leq j \leq a_{2}$
Clearly f^{*} is a bijection and $f^{*}(E(G))=\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$. Therefore G admits centered hexagonal graceful
labeling. Hence the graph 2 -star $K_{1, a_{4}} \cup K_{1, a_{2}}$ for all $a_{1}, a_{2} \geq 1$ is a centered hexagonal graceful graph.

Lemma 2.3: The 3-star graph is a centered hexagonal graceful graph. Proof: Let $G=(V, E)$ be a 3 -star $K_{1, a_{9}} \cup K_{1, a_{2}} \cup K_{1, e_{2}}$ for all $a_{1}, a_{2}, a_{3} \geq 1$ with the
vertex set and the edge set respectively
$V=\left\{u_{10}, u_{11}, u_{12}, \ldots, u_{10}, u_{20}, u_{21}, u_{22}, \ldots, u_{29}, u_{30}, u_{31}, u_{32}, \ldots, u_{3{ }^{9},}\right\}$ and
$E=\left\{u_{10} u_{1 ;}: 1 \leq j \leq a_{1}\right\} \cup\left\{u_{20} u_{2 j}: 1 \leq j \leq a_{2}\right\} \cup\left\{u_{30} u_{3,}: 1 \leq j \leq a_{3}\right\}$. Then G has
$a_{1}+a_{2}+a_{9}+3$ vertices and $a_{1}+a_{2}+a_{3}$ edges. Take $a_{1}+a_{2}+a_{3}=m$
Define $f: V(G) \rightarrow\left\{0,1,2, \ldots, D_{m}\right\}$ as follows.
$f\left(u_{i 0}\right)=i-1$. where $i=1,2,3$
$f\left(u_{1,}\right)=3\left(m^{2}-2 m j+j^{2}+m-j\right)+1$, where $1 \leq j \leq a_{1}$
$f\left(u_{2 j}\right)=3\left(m^{2}-2 a_{1} m-2 j m+a_{1}{ }^{2}+2 a_{1} j+j^{2}+m-a_{1}-j\right)+2$, where $1 \leq j \leq a_{2}$
$f\left(u_{3 j}\right)=3\left(m^{2}-2 m\left(a_{1}+a_{2}\right)-2 j m+a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+2 j\left(a_{1}+a_{2}\right)+j^{2}+m-\left(a_{1}+a_{2}\right)-j\right)+3 \quad$, where
$1 \leq j \leq a_{3}$
We shall prove that G admits centered hexagonal graceful labeling. From the definition, it is clear that $\max _{v \in V(())} f(v)$ is D_{m} and also $f(v) \in\left\{0,1,2, \ldots, D_{m}\right\}$.

Also from the definition, all the vertices of G have different labeling. Hence f is one to one
It remains to show that the edge values are of the form $\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$. The induced edge function $f^{*}: E(G) \rightarrow\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$ is defined as follows.
$f^{*}\left(u_{10} u_{1 j}\right)=3\left(m^{2}-2 m j+j^{2}+m-j\right)+1$, where $1 \leq j \leq a_{1}$
$f^{\bullet}\left(u_{20} u_{2 j}\right)=3\left(m^{2}-2 a_{1} m-2 j m+a_{1}^{2}+2 a_{1} j+j^{2}+m-a_{1}-j\right)+1$, where $1 \leq j \leq a_{2}$
$f *\left(u_{30} u_{3 j}\right)=3\left(m^{2}-2 m\left(a_{1}+a_{2}\right)-2 j m+a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+2 j\left(a_{1}+a_{2}\right)+j^{2}+m-\left(a_{1}+a_{2}\right)-j\right)+2$,
where $1 \leq j \leq a_{3}$
Clearly f^{*} is a bijection and $f^{*}(E(G))=\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$. Therefore G admits centered hexagonal graceful
labeling. Hence the graph 3-star $K_{1, a_{1}} \cup K_{1, a_{2}} \cup K_{1, a_{2}}$ for all $a_{1}, a_{2}, a_{3} \geq 1$ is a centered hexagonal graceful graph.

Theorem 2.4: The n - star graph is a centered hexagonal graceful graph.
Proof: Let $G=(V, E)$ be a n-star $K_{1,4} \cup K_{1 a_{2}} \cup \ldots \cup K_{1 a_{q}}$ for all $a_{1}, a_{2}, \ldots, a_{n} \geq 1$ with
the vertex set and the edge set respectively.
$V=\left\{u_{10}, u_{11}, u_{12}, \ldots, u_{12,}, u_{20}, u_{21}, u_{22}, \ldots, u_{2 a_{2}}, \ldots, u_{n 0}, u_{n 1}, u_{n 22}, \ldots, u_{n n_{3}}\right\}$ and
$E=\left\{u_{10} u_{1 j}: 1 \leq j \leq a_{1}\right\} \cup\left\{u_{20} u_{2 j}: 1 \leq j \leq a_{2}\right\} \cup \ldots \cup\left\{u_{n 0} u_{n j}: 1 \leq j \leq a_{n}\right\}$. Then G has
$a_{1}+a_{2}+\ldots+a_{n}+n$ vertices and $a_{1}+a_{2}+\ldots+a_{n}$ edges. Take $a_{1}+a_{2}+\ldots+a_{n}=m$
Define $f: V(G) \rightarrow\left\{0,1,2, \ldots, D_{m}\right\}$ as follows.
$f\left(u_{i 0}\right)=i-1$, where $1 \leq i \leq n$
$f\left(u_{1 j}\right)=3\left(m^{2}-2 m j+j^{2}+m-j\right)+1$, where $1 \leq j \leq a_{1}$
$f\left(u_{2 j}\right)=3\left(m^{2}-2 a_{1} m-2 j m+a_{1}^{2}+2 a_{1} j+j^{2}+m-a_{1}-j\right)+2$, where $1 \leq j \leq a_{2}$
$f\left(u_{3 j}\right)=3\left(m^{2}-2 m\left(a_{1}+a_{2}\right)-2 j m+a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+2 j\left(a_{1}+a_{2}\right)+j^{2}+m-\left(a_{1}+a_{2}\right)-j\right)+3$, where $1 \leq j \leq a_{3}$ and so on.
$f\left(u_{n j}\right)=3\left(\begin{array}{l}m^{2}-2 m\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)-2 j m+\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{n-1}{ }^{2}\right) \\ +2 j\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)+j^{2}+m-\left(a_{1}+a_{2}+\ldots+a_{n-1}\right) \\ -j+2\left[\left(a_{1} a_{2}+a_{1} a_{3}+\ldots+a_{1} a_{n-1}\right)+\left(a_{2} a_{3}+\ldots+a_{2} a_{n-1}\right)\right]\end{array}\right)+n$
We shall prove that G admits centered hexagonal graceful labeling. From the definition, it is clear that $\max _{v \in V(\Theta)} f(v)$ is D_{m} and also $f(v) \in\left\{0,1,2, \ldots, D_{m}\right\}$.

Also from the definition, all the vertices of G have different labeling. Hence f is one to one.
It remains to show that the edge values are of the form $\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$
The induced edge function $f^{*}: E(G) \rightarrow\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$ is defined as follows.
$f^{*}\left(u_{10} u_{1 j}\right)=3\left(m^{2}-2 m j+j^{2}+m-j\right)+1$, where $1 \leq j \leq a_{1}$
$f^{*}\left(u_{2} \|_{2 j}\right)=3\left(m^{2}-2 a_{1} m-2 j m+a_{1}^{2}+2 a_{1} j+j^{2}+m-a_{1}-j\right)+1$, where $1 \leq j \leq a_{2}$
$f^{*}\left(u_{30} u_{3 j}\right)=3\left(m^{2}-2 m\left(a_{1}+a_{2}\right)-2 j m+a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+2 j\left(a_{1}+a_{2}\right)+j^{2}+m-\left(a_{1}+a_{2}\right)-j\right)+3$
, where $1 \leq j \leq a_{3}$ and so on.
$f^{*}\left(u_{n 0} u_{n j}\right)=3\left(\begin{array}{l}m^{2}-2 m\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)-2 j m+\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{n-1}{ }^{2}\right) \\ +2 j\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)+j^{2}+m-\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)-j+ \\ 2\left[\left(a_{1} a_{2}+a_{1} a_{3}+\ldots+a_{1} a_{n-1}\right)+\left(a_{2} a_{3}+\ldots+a_{2} a_{n-1}\right)\right]\end{array}\right)+(n-1)$
Clearly f^{*} is a bijection and $f^{*}(E(G))=\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$. Therefore G admits centered
hexagonal graceful labeling. Hence the graph n-star $K_{1, a_{1}} \cup K_{1, a_{2}} \cup \ldots \cup K_{1, a_{n}}$ for all

REFERENCES
[1] M. Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second Edition-(1991).
[2] Frank Harary, Graph Theory, Narosa Publishing House - (2001).
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 16(2013), \#DS6.
[4] S.W. Golomb, How to number a graph, Graph Theory and Computing, R.C.Read, Academic Press, New York (1972), 23-37
[5] A. Rosa, On Certain Valuations of the vertices of a graph, Theory of Graphs, (Proc. Internat.Symposium , Rome , 1966, Gordon and Breach N.Y. and Dunod Paris (1967), 349-355.
[6] M. P. Syed Ali Nisaya, Labeling in Graphs - A Study, Ph.D. Thesis, M. S. University, Tirunelveli.

