PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 9 | Issue - 8 | August - 2020 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

sournal or Po	RIGINAL RESEARCH PAPER	Ophthalmology			
AN	OMPARISON BETWEEN RAF RULE METHOD D MINUS LENS METHOD FOR MEASURING IPLITUDE OF ACCOMMODATION"	KEY WORDS: Amplitude of accommodation, RAF Rule, Minus lens method.			
Dr Anand Goyal	* 3rd year resident, Ophthalmology Department, Ophthalmology Department, OPG Hostal 2, room no 1, behind MBS hospital, kota	GMC kota *Corresponding Author			
Dr Nikita Mandawat	3rd year resident, Ophthalmology Department, GMC kota PG Hostal 2, room no 23, behind MBS hospital, kota				
INTRODUCTION					

INTRODUCTION

Accommodation is defined as an increase in the dioptric or refractive power of the eye to focus objects clearly at various distances¹. An increase in the refractive power of the eye occurs because of an increase in the anterior and posterior surface curvatures of the crystalline lens resulting from contraction of the ciliary body muscle².

The radius of curvature of the anterior surface of the crystalline lens reduces by 0.33 mm per dioptre of accommodation, while the posterior surface reduces by 0.15 mm per dioptre of accommodation³.

Maximum refractive change that an eye can undergo or the maximum amount of accommodation that can be exerted is called the amplitude of accommodation⁴. Amplitude of accommodation is depend upon age from maximum in the early teenage years to presence of presbyopic symptoms starting at about 40 to 45 years of age due to decrease in amplitude of accommodation, when the accommodative reserve becomes insufficient to maintain focus on near objects⁵. Role of amplitude of accommodation in accommodative esotropia is also well known⁶.

Various methods for measurement of amplitude of accommodation are⁷:-

- 1) RAFRule method
- 2) Minus lens method
- 3) Pushup method

Purpose of this study is to compare between RAF Rule method and Minus lens method for measurement of amplitude of accommodation in normal subjects of age group between 20 to 25 year.

MATERIALS AND METHODS

After taking informed consent, measurement of amplitude of accommodation is done on 30 normal subjects with visual acuity of 6/6 in each eye at 6 m and 40 cm by using distant and handheld reduced Snellen chart respectively and rule out

amblyopia, strabismus, any other ocular pathology. Study is done in MBS Hospital & Govt. Medical Collage, Kota.

RAF Rule method :-

Measurement of NPA is done by using either Times roman typeface, Reduced snellen chart or G.P.O. telephone directory as standard target on RAF Rule. Measurement is done with full refractive correction, first each eye separately and then both eye simultaneously and in normal room illumination. The ruler is hold and gently places the cheek rest on the inferior orbital margin of subject. Then asked to patient to focus on target and slowly moves the drum towards the patient's eyes at a constant rate of about 1-2 cm per second⁸ and NPA is when the patient reports blurring of latters and amplitude of accommodation is measured by NPA.

Figure showing RAF Rule

Minus lens method:-

A reduced snellen chart was placed in front at viewing distance of 40 cm then subjects were instructed to keep the illuminated letters clear and sharp and to report when first noticeable sustained blur that could not be cleared by further conscious effort. Minus lenses in 0.25 D steps were introduced over the distance correction. When the letters became and remained blurred that point is recorded and add 2.5D ignoring the minus sign⁹.

RESULTS

Out of 30 subjects 18 were male and 12 were female. Amplitude of accommodation value measured by RAF Rule method and Minus lens method for various subjects are shown in Table no. 1

S.N.	Name	Age	Sex	RAF RULE METHOD		MINUS LENS METHOD
		_		NPA (cm)	AMPLITUDE (in diopter)	AMPLITUDE (in diopter)
1	Patient 1	23	М	9	11.11	9.5
2	Patient 2	20	F	11.1	9	7.75
3	Patient 3	25	М	9.8	10.2	10.5
4	Patient 4	23	М	9.6	10.41	9.25
5	Patient 5	24	М	10.6	9.43	9
6	Patient 6	21	М	8.5	11.76	10
7	Patient 7	23	F	8.2	12.19	8.5
8	Patient 8	25	М	8.6	11.62	9.5
9	Patient 9	23	М	9.6	10.41	7.25
10	Patient 10	21	F	8.4	11.9	9
11	Patient 11	25	М	8.9	11.23	7
12	Patient 12	21	М	10.8	9.25	10
13	Patient 13	23	F	8.5	11.76	8.75
14	Patient 14	23	F	9.8	10.2	8.5

Table no.1 showing measured value for amplitude of accommodation

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 9 | Issue - 8 | August - 2020 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

15	Patient 15	21	М	8	12.5	9.25
16	Patient 16	23	F	10.6	9.43	7.25
17	Patient 17	25	М	9	11.11	9
18	Patient 18	25	F	8.9	11.23	8
19	Patient 19	23	F	9.4	10.63	10.25
20	Patient 20	20	М	8.4	11.9	7.5
21	Patient 21	23	F	10.4	9.61	9.25
22	Patient 22	25	М	10.4	9.61	8.5
23	Patient 23	25	F	8.6	11.62	8
24	Patient 24	25	М	8.9	11.23	10
25	Patient 25	24	F	8.6	11.62	8.75
26	Patient 26	24	М	8	12.5	9.75
27	Patient 27	25	М	9.6	10.41	9
28	Patient 28	23	М	8.7	11.49	7
29	Patient 29	23	М	10.2	9.8	8.5
30	Patient 30	23	F	9.2	10.86	8.25

 A.K.Khurana.Theory and practice of Optics and Refraction. 3rd edition 2014; page no.90.

 Siderov J, Chiu SC, Waugh SJ. Differences in the nearpoint of convergence with target type. Ophthalmic Physiol Opt 2001;21:356-60.

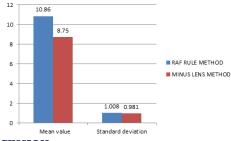
 Antona B, Barra F, Barrio Á, Gonzalez E, Sanchez I. Repeatability, interexaminer and agreement in amplitude of accommodation measurements. Graefes Arch Clin Exp Ophthalmol. 2009;247 (1):121-127.
 Solani D. Mathebula, Mologadi D. Nisoane, Nkalebetja T. Makgaba, Khensani

 Solani D. Mathebula, Mologadi D. Ntsoane, Nkalebetja T. Makgaba, Khensani L. Landela. Comparison of the amplitude of accommodation determined subjectively and objectively in South African university students. AFRICAN VISION AND EYE HEALTH. 2018; Vol 77, no 1.

NPA-Near point of accommodation

Table no.2 showing various value of amplitude of accommodation

Mean value of amplitude of accommodation by RAF Rule


method and Minus lens method are 10.86D and 8.75D

respectively. When measured value are compared statistically this difference is significant as calculated p value

is <0.0001 (as value <0.001 is considered statistically highly

	Mean value	Standard deviation	p value
RAF RULE	10.86	1.008	< 0.0001
METHOD			
MINUS LENS	8.75	0.981	
METHOD			

Graphical display for value of amplitude of accommodation

DISSCUSSION

significant).

In our study we found that RAF Rule method is overestimate while the minus lens method underestimate the amplitude of accommodation, causes behind this may be that RAF Rule lead to relative magnification of target while the minus lens method creates an abnormal viewing environment in which the target is stationary but the stimulus becomes increasingly minified¹⁰.

CONCLUSION

NPA and amplitude of accommodation is the primary finding for diagnosis of anomalies of accommodation. RAF Rule and minus lens method show significant difference in measuring amplitude of accommodation. Other methods available are push up and push down can also be used.

REFERENCES

- Grosvenor T. Primary care optometry. 5th ed. London: Butterworth-Heinemann;2007.
- Rabbetts RB. Bennett and Rabbetts clinical visual optics. 3rd ed. London: Butterworth-Heinemann; 1998.
- Tunnacliffe AH. Introduction to visual optics. 4th ed. London: ABDO; 2001.
 Eskridge IB. Amos IF. Bartlett ID. Clinical procedures in optione
- Eskridge JB, Amos JF, Bartlett JD. Clinical procedures in optometry. Philadelphia, PA: JP Lippincott Co.; 1991.
 Benjamin WJ. Borish'S clinical refraction. Philadelphia, PA: W.B. Saunders
- Company; 1998. A K Khurana Theory and practice of Squint and orthoptics 2nd edition 2013;
- A.K.Khurana. Theory and practice of Squint and orthoptics. 2nd edition 2013; page no. 179.