| ORIGINAL RESEARCH PAPER | Physiology |
| :--- | :--- | :--- | :--- |

Siddhartha
Sankar Dash*
Dept. of Physiology, Midnapore College(Autonomus), Midnapore -721101,
Rabindra Nath West Bengal *Corresponding Author
Saha
Dept. of Physiology, Midnapore College(Autonomus), Midnapore -721101,

Background: Diabetes and coronary heart disease is increasing both globally and in India due to burden of noncommunicable diseases. The present study was conducted to estimate the prevalence of risk factors associated with non-communicable disease and to study the association of the risk factors with non-communicable disease among tribal population of Gopi II block of Paschim Midnapore
Methods: A cross-sectional study was conducted Gopi II block during Augustl to October 2019 among 150 Indigenous tribal population of Paschim Midnapore. Multistage random sampling was used. A predesigned, pretested, semistructured modified WHO STEPs questionnaire was used. Chi square and Multiple Logistic Regression was done to see association.
Results: Mean age was 39.03 ± 12.76 years. Majority (66.7%) were females and (44.7%) had studied up to secondary. (26\%) were tobacco smokers and (68\%) were tobacco chewing. (36\%) were alcoholic. (89.3\%) had exercising for <2.5 hrs. 68% were taking vegetables >10 times/ week and 88.7% were taking fruits <5 times/week. (26%) were overweight, (45.3%) had abdominal obesity and 31% were hypertensive. 93.3% were aware of the harmful effects of tobacco consumption. Multiple logistic regression analysis showing factors associated with male were more likely to had higher abdominal obesity and alcohol user >50 yrs, government employee. With smoking, male having more chances of smoking and Age group of $20-30 \mathrm{yrs}$ and $31-40 \mathrm{yrs}$.
Conclusions: The mean age was 39.03 ± 12.76 years. (26\%) were overweight, (45.3%) had abdominal obesity and (31\%) were hypertensive. NCD clinic, IEC should be increased.

INTRODUCTION

Diabetes and coronary heart disease is increasing both globally and in India due to burden of non-communicable diseases. In 2008, of the 57 million global deaths, 36 million or 63% were due to NCDs and out of which CVDs were responsible for 47.9% deaths which is the largest proportion of NCD related deaths. 1 It may be said that not only developed countries will be affected by NCD, the developing countries will also equally, even more, will be affected. 2 The rate of increase of NCD in developing countries is almost double in comparison to developed countries. 3 It seems reasonable to argue that people with changing lifestyles due to growing urbanization are associated with adverse NCD risk factors irrespective of their habitat. 4 From rural 6.7% of women and 58.9% of men consume alcohol. 12.8% women and 14.9% men are overweight and obese (BMI>25 kg/m2) in rural area of $15-49$ age group and same for men is 13.4%.However, there is paucity of information regarding the non-communicable diseases risk factors among tribal population of Paschim Midnapore. Hence the present study has been conducted to estimate the prevalence of risk factors associated with non-communicable disease among tribal population of Gopi II block of Paschim Midnapore and to study the association of the risk factors with noncommunicable disease among tribal population of Gopi II block of Paschim Midnapore

METHODS

This was a cross-sectional study conducted in a rural community Gopi II block during Augustl to October 2019 among 150 Indigenous tribal population of Paschim Midnapore. Indigenous tribes viz. Debbarma, Koloi, Jamatias were populated in these areas. The study was conducted among 150 indigenous tribal residents of the area considering a Prevalence of risk factor for NCD to be 11% reported by Oommen from a cross sectional study among Rural and Urban area of Tamil Nadu, with an absolute precision of 5 per cent at 5% level of significance. 6

Multistage random sampling technique was used in the
present study. Gopi II block had 10 villages out of which 5 villages were selected by simple random sampling in lst stage. Then in the 2nd stage, from each village, 30 families were selected (as per Panchayat family registers) by systematic random sampling method considering every 2nd house. Data were collected through house to house visit. A predesigned, pretested semi-structured modified version of WHO STEPS questionnaire was used. Due to limited resources, biochemical analysis (STEPS 3) was not conducted. STEPS 1 included information on age, sex, education, marital status, tobacco use, alcohol consumption, consumption of fruits, vegetables and physical activity. In STEPS 2 height, weight, waist circumference and blood pressure were measured. Weighing machine, constant tension tape and stadiometer were used to measure weight, waist circumference and height, respectively. Blood pressure was measured using Omron digital automatic blood pressure monitor three times. The average of the last two readings was taken as the final reading for that participant. All the measurements were taken according to the STEPS protocol. Re-calibration of equipment was done at regular intervals pregnant woman. Persons below 18 years, Bed ridden patients with debilitating illness and who did not give consent were excluded from the study. Individual data collections were kept anonymous and strict confidentiality was maintained.

Data analysis was done by SPSS V19.0. Descriptive statistics were expressed in frequencies and percentages. Chi square test was applied to assess the association of different variables. $\mathrm{P}<0.05$ was considered statistically significant. Multiple logistic regression analysis was applied to identify the risk factor association with demographic profile. Those variables which were found to be significantly associated with NCD risk factor by using Chi square test and Fisher exact test were only used as predictor variable in multiple logistic regression analysis. The study was conducted after obtaining permission from institutional ethics committee of Midnapore Medical College and Hospital.

RESULTS

Table 1 showed that the total number of respondents was 150 . The mean age of the respondents was 39.03 ± 12.76 years with a range of 20-70 years. The sample had 66.7% females and 33.3% males. Majority of the study participants were married, studied upto secondary school (44.7\%) and 52% were not involved in any occupation at the time of study.

Table 1: Demographic characteristics of respondents.

Characteristics	Respondents	Frequency (N)	\%
Sex	Male	50	33.3
	Female	100	66.7
Age group (in years)	20-30	56	37.3
	31-40	38	25.3
	41-50	24	16
	>50	32	21.3
Marital status	Married	136	90.7
	Unmarried	6	4.0
	Widow	8	5.3
Religion	Hindu	128	85.3
	Christian	22	14.7
Literacy	Illiterate	23	15.3
	Literate	18	12.0
	Primary School	32	21.3
	Secondary School	67	44.7
	Higher Secondary \& Above	10	6.6
Occupation	Homemaker	78	52.0
	Unskilled labourer	37	24.7
	Skilled labourer	14	9.3
	Govt. employee	8	5.3
	Self employed	13	8.7

Table 2: Clinical risk factors of non communicable diseases.

Characteristics	Frequency (N)	Percentage (\%)	
BMI	Underweight	14	9.3
	Normal	98	63.3
	Pre- obese	35	25.3
	Obese class I	2	1.3
	Obese class II	1	0.7
Waist- hip ratio	Normal	82	54.7
	High Risk	Normal	68
	Pre hypertension	50	35.3
	Hypertension stage I	33	36.3
	Hypertension stage II	12	22.0

Table 2 shows that the overweight was seen in 26%, abdominal obesity in 45.3% and 31% were suffering from hypertension. Table 4:93.3\% of the respondents were aware of the harmful effects of tobacco consumption. 72.7% said they received this awareness from electronic media.

Table 3: Behavioural risk factors of non-communicable diseases.

| | | | |
| :--- | :--- | :--- | :--- | Characteristic $\left.$| Frequency |
| :--- |
| (N) |\quad| Percentage |
| :--- |
| (\%) | \right\rvert\,

Tobacco chewing			
Chewing tobacco	Yes	102	68
	No	48	32
Age of starting of chewing tobacco (in years)	<19	29	19.3
	>19	73	48.7
Tobacco Form	Pan masala	89	59.3
	Sambhu (khaini)	6	4.0
	Ghutkha	4	2.7
	Others	3	2.0
Alcohol			
Drinking alcohol by the respondents	Yes	54	36
No		96	64
Age of starting alcohol (in years)	≤ 19	10	6.7
	>19	44	29.3
Alcohol form	Country	47	31.3
	Others	8	5.3
Exercise			
Exercise in hrs	<2.5	134	89.3
	>2.5	16	10.7
Vegetable intake			
Vegetable intake per week	<5	19	12.7
	5-10	29	19.3
	>10	102	68
Fruits intake			
Fruit intake per week	<5	133	88.7
	5-10	17	11.3

Table 3 shows that the different behavioural risk factors association with demographic profile in which tobacco can be consumed either in the form of smoking or chewing. Here 26% of the respondents were found to consume tobacco in the form of smoking. Out of them 11% smoked <4 bidis/day and 33% started smoking in the early age group. Majority (68\%) were taking tobacco in the form of chewing, 59.3\% were fond of eating pan masala and 48.7% respondents started chewing tobacco after the age of 19 yrs. 36% of respondents were engaged in the drinking activity where 31.3% drink country liquor..

Table 4: Awareness on harmful effect of tobacco consumption.

Characteristics	Frequency (N)	Percentage (\%)	
Harmful effect of tobacco	Yes	140	93.3
On health	No	10	6.7
Source of information on	Electronic media	109	72.7
Harmful effect of tobacco	Health worker	6	4.0
	Printed media	6	4.0
	Relatives/ friends	13	8.7
Would advice someone to quit tobacco	Yes	98	65.3
	No	52	34.7

Table 4 showed that 93.3% of the participants were aware about the harmful effect of tobacco on health and 65.3\% would advice someone to quit tobacco. 72.7% would get source of information from electronic media about the harmful effect of tobacco.

Table 5: Multiple logistic regression analysis showing factors associated with body mass index.

Characteristics	Normal/ underweight	Obese	Odds ratio (95\% C.I.)	P value
Sex	32	18	0.642 $(0.238-1.731)$	3.81
Male				

Female	79	21	l	
Occupation	63	15	$2.712(0.678-1$ $10.843)$	0.158
Household	28	9	2.579 (0.681- $9.767)$	0.163
Unskilled labourer		4	2.178(0.440- $10.784)$	0.340
Skilled labourer	10	5	$0.495(0.081-$ $3.033)$	0.447
Govt. employee	3	6	1	
Self employed	7			

Table 6: Multiple logistic regression analysis showing factors associated with waist hip ratio.

Characteristics	Normal	High risk	Odds Ratio (95\% C.I.)	P value
Sex	44	6	13.753 $(4.254-44.462)$	0.000
Male	38	62	1	
Female				
Occupation	32	46	2.247 $(0.448-11.269)$	0.325
Household	32	1.739 $(0.354-8.528)$	0.495	
Unskilled labourer	24	2	5.654 $(0.637-50.211)$	0.120
Skilled labourer	12	2	3.107 $(0.302-31.973)$	0.341
Govt. employee	6	5	1	
Self employed	8	5		

Table 5 showed that factors associated with body mass index in which body mass index is not significantly associated with sex and occupation in Multiple Logistic Regression analysis.

Table 6 showed that Multiple Logistic Regression analysis showing factors associated with waist hip ratio in which males had 13 times more chances of higher abdominal obesity [13.75(95\% CI 4.254-44.462)] as compared to female.

Table 7: Multiple logistic regression analysis showing factors associated with alcohol consumption.

Characteristics	Yes	No	Odds ratio (95\% C.I.)	\mathbf{P} value
Sex	35	15	$6.307(2.241-17.749)$	0.000
Male	20	80	1	
Female				

Age group (in years)

$20-30$	11	45	$0.267(0.084-0.842)$	0.024	
$31-40$	14	24	$0.713(0.223-2.279)$	0.568	
$41-50$	15	9	$1.840(0.505-6.706)$	0.356	
>50	15	17	1		
Occupation	14	63	$0.371(0.076-1.821)$	0.222	
Household					
Unskilled labourer	22	15	$0.815(0.179-3.708)$	0.791	
Skilled labourer	9	5	$1.187(0.189-7.467)$	0.855	
Govt. employee	2	6	$0.128(0.015-0.220)$	0.043	
Self employed	8	5	1		

Table 7 showed that multiple logistic regression analysis showing factors associated with alcohol in which alcohol consumption is significantly associated with males in which males had six times more chances of alcoholic [6.307(95\% CI 2.241-17.749)] as compared to female. There were 74% less chance of consuming alcohol as compared to age group of more than 50 yrs [0.267(95\% CI 0.084-0.842] with a p value of 0.024. government employee had 87% less chances of Alcohol consumption [0.128(95\% CI 0.015-0.220)] as compared to self employed.

Table 8: Multiple logistic regression analysis showing factors associated with hypertension.

Characteristics	Normal	Hypertension	Odds Ratio (95\% C.I.)	P value	
Sex	10	40	$0.785(0.277-$ $2.223)$	0.648	
Male	40	60	1		
Female					
Occupation	36	42	$2.454(0.543-$ $11.096)$	0.244	
Household	7	30	$0.759(0.163-$ 0.725 Unskilled labourer		
Skilled labourer	3	11	$0.914(0.148-$ Govt. employee	1	

Table 8 showed that factors associated with hypertension in which hypertension is not significantly associated with sex and occupation in multiple logistic regression analysis.

Table 9: Multiple logistic regression analysis showing factors associated with tobacco smoking

Characteristics	Yes	No	Odds ratio (95\% C.I.)	P value	
Sex	24	26	$7.282(2.020-26.254)$	0.002	
Male	15	85	1	0.	
Female	4	52	$0.075(0.016-0.356)$	0.001	
Age group (in years)	7	31	$0.244(0.062-0.965)$	0.044	
$20-30$	10	14	$0.500(0.136-1.833)$	0.296	
$31-40$	18	14	1		
$41-50$	12	11	$1.523(0.145-16.010)$	0.726	
>50	8	10	$2.000(0.206-19.391)$	0.550	
Literacy	7	25	$0.886(0.095-8.259)$	0.916	
Illiterate	10	57	$0.607(0.078-4.722)$	0.633	
Literate	2	8	1		
Primary school					
Secondary school					
Higher secondary above					
Occupation	13	65	$0.995(0.154-6.441)$	0.996	
Household	17	20	$1.327(0.252-6.994)$	0.739	
Unskilled labourer	4	10	$0.744(0.098-5.672)$	0.775	
Skilled labourer	4	7	$0.166(0.011-2.596)$	0.200	
Govt. Employee	1	4	9	1	
Self employed	4				

Table 9 showed that Multiple Logistic Regression analysis in which Tobacco smoking is significantly associated with male having 7 times more chances of smoking [7.282(95\% CI 2.020-26.254)] as compared to female, Age group of 20-30 yrs had 93\% less chances [0.075(95\% CI 0.016-0.356)] as compared to >50 years of age and $31-40$ yrs had 76% less chances [0.244(95\% CI 0.062-0.965)] as compared to >50 years of age.

DISCUSSION

In our present studyall the individuals are equal to or above 20 years of age, of which 33.3% are males and rest 66.7% are females. The study was conducted on a tribal population in which 36% were males and 64% females. 7 Bhagyalaxmi conducted on the prevalence of risk factors of NCD in a district of Gujarat, it was found that 10% of the study subjects were skilled labour. 8 In our study, it was found that 14% were skilled labour. Kandpal on Rang Bhotias which showed that 37.5% consumed alcohol, among this 78.8% of males and 14.1% of females were found to consume alcohol. 7 Our present study, showed that 36% of the study subjects consumed alcohol. Among which 70\% of males and 20% of females were found to consume alcohol. Bhagyalaxmi
conducted on prevalence of risk factors of NCDs in a district of Gujarat, it was observed that 23.8% were smokers. 8 In our study, it was found that 14% were skilled labour. Kandpal on Rang Bhotias which showed that 37.5% consumed alcohol, among this 78.8% of males and 14.1% of females were found to consume alcohol. 7 Our present study, showed that 36% of the study subjects consumed alcohol. Among which 70% of males and 20% of females were found to consume alcohol. Bhagyalaxmi conducted on prevalence of risk factors of NCDs in a district of Gujarat, it was observed that 23.8% were smokers. 8 In our study, it was found that among the study subjects 26% were smokers. In a study conducted by Prabhakaran on the employees of a large industry area near Delhi, they found that 70\% were hypertensive. 9 Similar study, by Gupta on the urban population of Delhi reported that 73.9% were hypertensive. 10 In our study, it was observed that 66.7% of the study subjects were hypertensive. Misra conducted on Mishing tribe, showed 26% had BMI >25 $\mathrm{Kg} / \mathrm{m} 2.11$ Another study, was conducted by Chadha in Delhi, showed 27.8% were having $\mathrm{BMI}>25 \mathrm{Kg} / \mathrm{m} 2.12$ In our study, it was observed that 25.3% had $\mathrm{BMI}>25 \mathrm{Kg} / \mathrm{m} 2$. Kanniyappan conducted in south India showed 47.8% had waist-hip ratio above normal. 13 In our study, the proportion of men and women having waist-hip ratio >1.0 and >0.85 respectively was significantly higher of about 45.3%. Our study showed high prevalence of hypertension among the study subjects. Similarly, Prabhakaran and Gupta in their studies that hypertension was the most prevalent risk factor for development of CVDs.9,10 The overall prevalence of hypertension was higher in individuals who consumed alcohol. In our study, the prevalence of CVD risk factors was found higher among those who consumed alcohol. Kandpal in which it was also reported that there was higher risk of developing CVD with alcohol consumption. 7 Bhagyalaxmi in her study reported that smoking tobacco was also a risk factor for development of NCDs, which in our study was also foundto be a significant risk factor for developing NCDs. 8 A study by Mishra and Kanniyappan also reported BMI and waist-hip ratio as equally significant risk factor for development of CVDs.11,13

CONCLUSION

The tobacco and alcohol use, two of the major NCD risk factors were high in this population. A strong negative behaviour was the low level of physical activity among this population which could be the reason for low level of overweight and abdominal obesity, hypertension. Unhealthy diet was more prevalent among the illiterates which could be resolved by better education. Awareness on harmful effect of tobacco of health was higher and treatment and control of hypertension was lower probably due to inadequate access to health care.

Recommendations

NCD clinic should be Increase in number. Enforcementof laws against use of tobacco and alcohol should be made more stringent. More information, education and communication activity regarding promotion of physical activity and balanced diet.

Funding: No fundingsources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. WHO (2011), Global Status Report on Non-communicable diseases-2010. Available at: http://www.who.int/nmh/publications/ncd_report_full_en.pdf. Accessed on 10 June 2017
2. Ezzati M, Lopez AD, Rodgers A,Vander Hoorn S, Murray CJL,The Comparative Risk assessment collaborating group. Selected major risk factors and global and regional burden of disease.Lancet. 2002;360:1347-60.
3. Gaziano TA. Cardiovascular disease in the developing world and it's cost effective management. Circulation.2005;112:3547-53.
4. Das M, Pal S, Ghosh A. Prevelance of Cardiovascular disease risk factors by
habitat: A study on Adult Asian Indians in West Bengal, India Antropol Anz 2011;68:253-64.
5. NFHS IV- 2015-16 Tripura fact sheet. Available at: http:// rchiips. org/NFHS/pdf/NFHS4/TR_FactSheet.pdf.Accessed on 15 June 2017.
6. Oommen AM, Joseph V, George AKV, Jose J. Prevalence of risk factors for non communicable diseases in rural and urban Tamilnadu. Indian J Med Res. 2016;144:460-71.
7. Kandpal V, Sachdeva MP, Saraswathy KN. An assessment of study of CVD related risk factors in a tribal population of India. BMC Public Health 2016;16:434. Bhagyalaxmi A, Atul T, Shikha J. Prevalence of Risk Factors of Non-communicable Diseases in a District of Gujarat, India. J Health Popul Nutr.2013;31(1):78-85.
8. Prabhakaran D, Shah P, ChaturvediV, Ramkrishnan L, Monhappa A, Reddy KS Cardiovascular risk factors prevalence among men in a large industry of northern India. National Med J India. 2005; 18(2):59-65.
9. Gupta R, Gupta VP, Sarna M, Bhatnagar S, Thanvi J, Sharma V, et al. Prevalence of Cardiovascular Diseases and risk factors in an urban Indian population: Jaipur Heart Watch-2.Indian Heart J.2002;54(1):59-66.
10. Misra PJ, Mini GK, Thankappan KR. Risk factor profile for non-communicable diseases among Mishing tribes in Assam,India: Results from a WHO STEP survey. Indian JMed Res. 2014;140:370-8.
11. Chadha SL, Radhakrishnan S, Ramachandran K, Kaul U, Gopinath N Epidemiological study of Cardiovascular Heart Diseases in urban population of Delhi. Indian J Med Res. 1990;92:424-30.
12. Kanniyappan D, Kalidhas P, Aruna RM. Age, gender related prevalence of cardiovascular risk factors in overweight and obese south Indian adults. Int J Biol Med Res.201;2(2):513-22
