nal or **ORIGINAL RESEARCH PAPER Mathematics GENERALIZED SEMI STAR b-SEPARATION** KEY WORDS: gs*b-**AXIOMS IN TOPOLOGICAL SPACES** $T_k(k=0,1,2,1/2), gs*b-D_k(k=0,1,2).$ **K. Japhia Tino** M.Phil scholar, Department of Mathematics, Aditanar college of Arts and Science, Tiruchendur, India. *Corresponding Author **Mercy***

Dr. S. Shenbaga Department Of Mathematics, Aditanar College Of Arts And Science, Tiruch endur, India. Devi

The aim of this paper is to introduce the new class of spaces via gs*b-open sets and gs*b-difference sets. Also, we study some basic properties and their characterizations.

1.INTRODUCTION

ABSTRACT

D.Andrijevic[1] introduced the concept of b-open sets and characterized its topological properties. Caldas and Jafari[2] introduced and studied $b-T_0$, $b-T_1$, $b-T_2$, $b-D_0$, $b-D_1$ and $b-D_2$ via $b-D_2$ Open sets after that Keskin and Noiri[3]introduced the notion of b-T_{1/2}. In 1996, Andrijevic gave a new type of generalized closed sets in topological spaces called b-closed sets and we extend this concept into gs*b-open sets.

In this paper, we introduce a new classes of spaces called $gs*b-T_k$ spaces, for k=0,1,2,1/2, $gs*b-D_k$ spaces, for k=0,1,2 and gs*b-spaces. Also, we study some basic properties and their various characterizations.

2. PRELIMINARIES

Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. (X, τ) will be replaced by X if there is no changes of confusion. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respec tively. We recall the following definitions and results.

DEFINITION 2.1[1]:

Let (X,τ) be a topological space. A subset A of the space X is said to be b-open if A int(cl(A)) cl(int(A)) and b-closed if int(cl(A)) cl(int(A)) A.

DEFINITION 2.2[6]:

Let (X,τ) be a topological space. A subset Aof X is said to be

generalized closed (briefly g-closed) if $cl(A) \subseteq U$ whenever A \subseteq U and U is open in (X, τ). The complement of g-closed set is g-open.

DEFINITION 2.3[4]: If A is a subset of X,

- (i) The generalized closure of A is defined as the intersection of all g-closed sets in X containing A and is denoted by cl*(A).
- (ii) The generalized interior of A is defined as the union of all g-open sets in X that are contained in A and is denoted by int*(A).

DEFINITION 2.4:

Let (X,τ) be a topological space. A subset A of the space X is said to be semi*-open[5] if A⊆cl*(int(A)) and semi*-closed

[4] if int*(cl(A)) \subseteq A.

DEFINITION 2.5[4]:

Let (X,τ) be a topological space and $A \subseteq X$. Then

(i) The semi*-closure of A is defined as the intersection of all semi*-closed sets in X containing A. It is denoted by

s*cl(A).

(ii) The semi*-interior of A is defined as the union of all semi*-open sets contained in A. It is denoted by s*int(A). **DEFINITION 2.6[7]:**

A subset A of a topological space (X,τ) is said to be generalized semi star b-closed (briefly gs*b-closed) if $s*cl(A) \subseteq U$ whenever $A \subseteq U$ and U is b-open in (X, τ) .

DEFINITION 2.7[7]:

A subset A of (X,τ) is said to be generalized semi star b-open (briefly gs*b-open) set if its complement X\A is gs*b-closed in X. The family of all gs*b-open sets in X is denoted by gs*b-O(X).

DEFINITION 2.8[8]:

Let A be a subset of a topological space (X, τ) . Then the union of all gs*b-open sets contained in A is called the gs*b-interior of A and it is denoted by gs*bintA. That is, gs*bint(A)= {V:V \subseteq A and V \in gs*b-O(X) $\}$.

DEFINITION 2.9[8]:

Let A be a subset of a topological space (X,τ) . Then the intersection of all gs*b-closed sets in X containing A is called the gs*b-closure of A and it is denoted by gs*bcl (A). That is, $gs*bcl(A) = \cap F:A \subseteq \{F \text{ and } F \in gs*b-C(X)\}.$

THEOREM 2.10[8]:

- Let A be a subset of a topological space (X,τ) . Then
- 1) A is gs*b-open if and only if gs*bint(A)=A
- 2) A is gs*b-closed if and only if gs*bcl(A)=A.

THEOREM 2.11[7]:

For every element x in a space X, X-{x} is gs*b-closed or bopen.

DEFINITION 2.12[8]:

Let X be a topological space and let $x \in X$. A subset N of X is said to be a gs*b-neighborhood (shortly, gs*b-nbhd) of x if there exists a gs*b-open set U such that $x \in U \subseteq N$.

THEOREM 2.13[1]: Every closed set is b-closed.

3. GENERALIZED SEMI STAR b-T_x SPACES **DEFINITION 3.1:**

A topological space (X,τ) is said to be

- (I) $gs*b-T_0$ if for each pair of distinct points x, y in X, there exist a gs*b-open set U in X such that either $x \in U$ and $y \notin U$ or $x \in U$ and $y \in U$.
- (ii) gs*b-T₁ if for each pair of distinct points x, y in X, there exist two gs*b-open sets U and V in X such that $x \in U$ but

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume-9 | Issue-3 | March - 2020 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

PROOF:

y∉U and x∉V but y∈V.

- (iii) $gs*b-T_2$ if for each pair of distinct points x, y in X, there exist two disjoint gs*b-open sets U and V in X such that $x \in U$ but $y \in U$ and $x \notin V$ but $y \in V$.
- (iv) $gs*b-T_{1/2}$ if every gs*b-closed set is b-closed.
- (v) gs*b-space if every gs*b-open set is open.

THEOREM 3.2:

A topological space (X,τ) is $gs*b-T_0$ if and only if for each pair of distinct points x, y in $X, gs*bcl({x}) \neq gs*bcl({y})$.

PROOF: NECESSITY:

Suppose X is $gs*b-T_0$ and x,y are any two distinct points of X. Then there exists a gs*b-open set U containing x or y, say x but not y. Since U is gs*b-open, X\U is a gs*b-closed set which does not contain x but contains y. Since $gs*bcl(\{y\})$ is the smallest gs*b-closed set containing y, $gs*bcl(\{y\}) \subseteq X\setminus U$. Then $x \notin gs*bcl(\{y\})$.Hence $gs*bcl(\{x\}) \neq gs*bcl(\{y\})$.

SUFFICIENCY:

Suppose that $x,y \in X$ with $x \neq y$ and $gs*bcl(\{x\})\neq gs*bcl(\{y\})$. Then there exists a point $z \in X$ such that $z \in gs*bcl(\{x\})$ but $z \notin gs*bcl(\{y\})$. Now, we claim that $x \notin gs*bcl(\{y\})$. If $x \in gs*bcl(\{y\})$, then $gs*bcl(\{x\}) \subseteq gs*bcl(\{y\})$. This implies, $z \in gs*bcl(\{y\})$, which contradicts $z \notin gs*bcl(\{y\})$. Therefore $x \notin gs*bcl(\{y\})$. Since $gs*bcl(\{y\})$ is gs*b-closed set containing y but not x, then $X \setminus gs*bcl(\{y\})$ is a gs*b-open set containing x but not y. Hence X is $a gs*b-T_0$ space.

THEOREM 3.3:

A topological space (X,τ) is $gs*b-T_1$ if and only if the singletons are gs*b-closed sets.

PROOF:

Let (X,τ) be a $gs*b-T_1$ space and x be any point of X. Let $y \in X \setminus \{x\}$. Then $x \neq y$ and so there exists a gs*b-open set U_y containing y but not x. That is $y \in U_y \subseteq X \setminus \{x\}$. This implies, $X \setminus \{x\} = \bigcup \{U_y/y \in X \setminus \{x\}\}$. Since the union of gs*b-open sets is gs*b-open, then $X \setminus \{x\}$ is gs*b-open containing y but not x. Hence $\{x\}$ is gs*b-closed in X. Conversely, suppose $\{p\}$ is gs*b-closed, for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Then $y \in X \setminus \{x\}$ and $x \in X \setminus \{y\}$. Since $\{x\}$ and $\{y\}$ are gs*b-closed sets in X, then $X \setminus \{x\}$ and $X \setminus \{y\}$ are gs*b-open sets in X. Thus, we have a gs*b-open set containing x but not y and a gs*b-open set containing y but not x. Hence X is a gs*b-T₁ space.

THEOREM 3.4:

A topological space (X,τ) is gs*b-T_{_{1/2}} if each singleton {x} of X is either b-closed or b-open.

PROOF: Let (X,τ) is a gs*b-T_{1/2} space.

CASE (I):

 $\begin{array}{l} \mbox{Suppose $\{x$} $ is not b-closed. Then $X \ x$} $ is not b-open. By Theorem 2.11, $X \ x$} $ is $gs*b-closed. Since X is a $gs*b-T_{1/2}$ space, then $X \ x$} $ is $b-closed and hence $\{x\}$ is $b-open. $ \ x$} $ is $b-open. $ \end{array}$

CASE (II):

 $\label{eq:suppose} \begin{array}{l} x \mbox{ is not b-open. Then $X \ x$ is not b-closed. By Theorem 2.11, $X \ x$ is $gs*b-open in X. Since X is $a $gs*b-T_{_{1/2}}$ space, then $X \ x$ is $b-open and hence x is $b-closed. \\ \end{array}$

THEOREM 3.5:

The following statements are equivalent for a topological space ${\tt X}.$

(i) X is gs*b-T₂.

(ii) For each x∈X and y≠x, there exists a gs*b-open set U containing x such that y∉gs*bcl(U).

(iii) For each $x \in X$, $\cap \{gs*bcl(U)/U \in gs*b-O(X,\tau) \text{ and } x \in U\}=\{x\}$.

(i)⇒(ii): Suppose X is gs*b-T₂. Then for x, y∈X with x≠y. Then there exists disjoint gs*b-open sets U and V containing x and y respectively. Since V is gs*b-open, then X\V is gs*b-closed containing U. Hence gs*bcl(U)⊆X\V. Since y∈V, then y∉X\V and hence y∉gs*bcl(U).

(ii) \Rightarrow (iii): If there exists an element $y \neq x$ in X such that $y \in \cap \{gs*bcl(U)/U \in gs*b-O(X) \text{ and } x \in U\}$, then $y \in gs*bcl(U)$ for every gs*b-open set U containing x. This contradicts our assumption. So there exists no such an element y. This proves (iii).

(iii) \Rightarrow (I): Let x,y \in X with x≠y. Then by our assumption, there exists a gs*b-open set U containing x such that y \notin gs*bcl(U). Let V=X\gs*bcl(U). Then V is gs*b-open set containing y. Also x \in U and U \cap V= ϕ . Thus we have a disjoint gs*b-open sets U and V containing x and y respectively. Hence X is a gs*b-T₂ space.

REMARK 3.6: Every gs*b-T₂ space is gs*b-T₁.

THEOREM 3.7: Every gs*b-space is gs*b-T_{1/2}.

PROOF:

Let (X,τ) be a gs*b-space and A be any gs*b-closed set in X. Then X\A is gs*b-open in X.Since X is gs*b-space, then X\A is open in X and so A is closed. By Theorem 2.13, A is b-closed. This shows that X is gs*b- $T_{1/2}$.

4. GENERALIZED SEMI STAR b-D_k SPACES DEFINITION 4.1:

A subset A of a topological space X is called a gs*b-difference set(briefly gs*b-D-set) if there exists U, $V \subseteq$ gs*b-O(X) such that U \neq X and A=U\V.

THEOREM 4.2: Every proper gs*b-open set is gs*b-D-set.

PROOF:

Let A be any proper gs*b-open subset of a topological space X. Take U=A and V= ϕ . Then A=U\V and U \neq X. Hence A is gs*b-D-set.

REMARK 4.3:

The converse of the above theorem need not be true which is shown in the following example.

EXAMPLE 4.4:

Let X={a,b,c,d} with a topology τ = { ϕ ,{a},{b},{a,b},{b,c},{a,b,c}, {b,c,d},X}. Thengs*b-O(X, τ)= { ϕ ,{a}, {b},{a,b}, {b,c},{b,d}, {a,b, c},{a,b,d},{b,c},{b,c},{b,d}, {a,b, c},{a,b,d},{b,c,d},X}. Take U={a,b,d} and V={a,b,c}. Then U \neq X and A=U\V={a,b,d}\{a,b,c}={d} is gs*b-D-set but not a gs*b-open set.

DEFINITION 4.5: A topological space (X, τ) is said to be

- (I) gs*b-D₀ if for any pair of distinct points x and y of X there exist a gs*b-D-set of X containing x but not y or a gs*b-Dset of X containing y but not x.
- (ii) gs*b-D₁ if for any pair of distinct points x and y of X there exist a gs*b-D-set of X containing x but not y and a gs*b-D-set of X containing y but not x.
- (iii) gs*b-D₂ if for any pair of distinct points x and y of X, there exist disjoint gs*b-D-sets G and E of X containing x and y respectively.

THEOREM 4.6: In a topological space (X, τ) ,

- (i) if (X,τ) is gs*b-T_k, then it is gs*b-D_k, for k = 0, 1, 2.
- (ii) if (X,τ) is gs*b-D_k, then it is gs*b-D_{k-1}, for k = 1,2.

PROOF:

 (i) First we prove the result for k=0. Suppose (X,τ) is gs*b-T₀. Then for each pair of distinct points x, y in X, there exists a

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume-9 | Issue-3 | March - 2020 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

gs*b-open set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. By Theorem 4.2, U is gs*b-D-set in X. Then we have for each pair of distinct points x, y in X, there exists a gs*b-D-set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. Hence (X, τ) is a gs*b-D₀ space. Similarly we can prove that every gs*b-T_k space is gs*b-D_k space, for k=1,2.

(ii) Let k=2. Suppose (X,τ) is a gs*b-D₂ space. Then for any pair of distinct points x and y of X, there exists disjoint gs*b-D-sets U and V of X containing x and y respectively. That is for any pair of distinct points x and y of X, there exists a gs*b-D-set U of X containing x but not y and a gs*b-D-set V of X containing y but not x. Hence (X,τ) is a gs*b-D₁ space. Similarly we can prove that every gs*b-D₁ space is a gs*b-D₀ space.

THEOREM 4.7: A space X is gs*b-D₀ if and only if it is gs*b-T₀.

PROOF:NECESSITY:

Suppose that X is gs*b-D₀. Then for each distinct pair x, $y \in X$ there is a gs*b-D-set G containing x or y, say x but not y. Since G is gs*b-D-set, then there are two gs*b-open sets U_1 and U_2 such that $U_1 \neq X$ and $G=U_1 \setminus U_2$. Since $x \in G$ and $y \notin G$, then $x \in U_1$. For $y \notin G$, we have two cases,

(a) $\mathbf{y} \in \mathbf{U}_1$ (b) $\mathbf{y} \in \mathbf{U}_1$ and $\mathbf{y} \in \mathbf{U}_2$.

In case(a), $x \in U_1$ and $y \notin U_1$. In case(b), $y \in U_2$ and $x \notin U_2$. Thus in both cases we have for each pair of distinct points x and y in X, there exists a gs*b-open set U_1 containing x but not y or a gs*b-open set U_2 containing y but not x. Hence X is gs*b-T₀.

SUFFICIENCY:

Suppose (X,τ) is gs*b-T_0. Then by Theorem 4.6(i), (X,τ) is gs*b-D_0.

THEOREM 4.8:

A space X is $gs*b-D_1$ if and only if it is $gs*b-D_2$.

PROOF: NECESSITY:

Let x, $y \in X$, with $x \neq y$. Then there exist gs^*b -D -sets G_1, G_2 in X such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Since G_1 and G_2 are gs^*b -D-sets, then $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1, U_2, U_3 and U_4 are gs^*b -open sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

(I) SUPPOSE $X \in U_3$. FOR $Y \in G_1$ WE HAVE TWO SUB-CASES:

- (a) Suppose $y \notin U_1$. Since $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$, and since $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Since the union of gs*b-open sets is gs*b-open set, then $U_2 \cup U_3$ and $U_1 \cup U_4$ are gs*b-open sets. Also $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \varphi$. Thus we have disjoint gs*b-D-sets $U_1 \setminus (U_2 \cup U_3)$ and $U_3 \setminus (U_1 \cup U_4)$ containing x and y respectively.
- (b) If $y \in U_1$ and $y \in U_2$, we have $x \in U_1 \setminus U_2$, and $y \in U_2$. Also $(U_1 \setminus U_2) \cap U_2 = \varphi$. Thus we have disjoint gs*b-D-sets $U_1 \setminus U_2$ and U_2 containing x and y respectively.
- (ii) Suppose x∈U₃ and x∈U₄. We have y∈U₃\U₄ and x∈U₄. Hence (U₃\U₄)∩U₄= φ. Thus we have disjoint gs*b-D-sets U₄ and U₃\U₄ containing x and y respectively. Hence X is gs*b-D₂.

SUFFICIENCY:

Suppose X is $gs*b-D_2$. Then by Theorem 4.6(ii), X is $gs*b-D_1$.

DEFINITION 4.9:

A point $x \in X$ which has only X as the gs*b-neighborhood is called a gs*b-neat point.

THEOREM 4.10:

For a gs*b-T₀ space (X,τ) the following are equivalent: (I) (X,τ) is gs*b-D₁. (ii) (X,τ) has no gs*b-neat point.

PROOF:

(i) \Rightarrow (ii). Since (X,τ) is $gs*b-D_1$, then each point x of X is contained in a gs*b-D-set $A = U \setminus V$ and thus in U. By definition $U \neq X$. This implies that x is not a gs*b-neat point.

(ii)⇒(I) Suppose (X,τ) has no gs*b-neat point. Let x and y be distinct points in X. Since X is gs*b-T₀, then there exists a gs*b-open set U containing x or y, say x. Since y ∉U, then U≠X. By Theorem 4.2, U is a gs*b-D-set. Since X has no gs*b-neat point, then y is not a gs*b-neat point. This means that there exists a gs*b-neighborhood V of y such that V≠X. Since V is a gs*b-nbhd of y, there exists a gs*b-open set G such that y∈G⊆V.

Thus $y \in G \setminus U$ but not x. Also $G \setminus U$ is a gs*b-D-set. Hence X is a gs*b-D₁ space.

COROLLARY 4.11:

A gs*b-T₀ space X is not gs*b-D₁ if and only if there is a unique gs*b-neat point in X.

PROOF:

Suppose (X, τ) be a gs*b-T₀ space. But (X, τ) is not a gs*b-D₁. Then by the above theorem (X, τ) has a gs*b-neat point. Now we have to prove the uniqueness. Suppose x and y are two different gs*b-neat points in X. Since X is gs*b-T₀, at least one of x and y, say x, has a gs*b-open set U containing x but not y. Then U is a gs*b-nbhd of x and U \neq X. Therefore x is not a gs*bneat point which contradicts x is a gs*b-neat point. Hence x=y.

REFERENCES

- 1. D.Andrijevic, On b-open sets, Mat. Vesnik, (1996), 48:59-64.
- M.Caldas and S.Jafari, On some applications of b-open sets in topological spaces, Kochi J.Math.2(2007),11-79.
 A.Keskin and T.Noiri. On Db-sets and associated separation axioms. Bulletin
- A.Keskin and T.Noiri, On bD-sets and associated separation axioms, Bulletin of the Iranian Math.Soc,35(1)(2009),179-198.
 A.Robert and S.Pious Missier, On semi*-closed sets, Asian Journal of Current
- Engineering and Mathsl (20),173-176.
 A.Robert and S.Pious Missier, A new class of nearly open sets, International
- Journal Of Mathematical Archive-3(7),2012,2575-2582.
 NLevine. Generalized Closed sets in Topology. Rand.Circ.Mat. Palermo.
- N.Levine, Generalized Closed sets in Topology, Rand.Circ.Mat. Palermo, 19(2)(1970),88-96.
- K. Japhia Tino Mercy, S. Shenbaga Devi, Generalized semi star b-closed sets in topological spaces, International Journal Of Mathematical Archive,-11(3),2020,34-40,ISSN 2229-5046.
- K.Japhia Tino Mercy, S.Shenbaga Devi, Proceedings, National conference on recent trends in graphs, SadakathullaAppaCollege, Tirunelveli, ISBN:978-81-942482-5-5.