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ABSTRACT

The aim of this paper is to introduce the new class of spaces via gs*b-open sets and gs*b-difference sets. Also, we study

1.INTRODUCTION

D.Andrijevic[1] introduced the concept of b-open sets and
characterized its topological properties. Caldas and Jafari[2]
introduced and studied b-T,,b-T,b-T, b-D,b-D,and b-D,via b-
Open sets after that Keskin and Noiri[3]introduced the notion
of b-T,,,. In 1996, Andrijevic gave a new type of generalized
closed sets in topological spaces called b-closed sets and we
extend this conceptinto gs*b-opensets.

In this paper, we introduce a new classes of spaces called
gs*b-T, spaces, for k=0,1,2,1/2,gs*b-D, spaces, for k=0,1,2
and gs*b-spaces. Also, we study some basic properties and
their various characterizations.

2.PRELIMINARIES

Throughout this paper (X,7) represents a topological space on
which no separation axiom is assumed unless otherwise
mentioned. (X,7) will be replaced by X if there is no changes of
confusion. For a subset A of a topological space X, cl(A) and
int(A) denote the closure of A and the interior of A respec
tively. We recall the following definitions and results.

DEFINITION 2.1[1]:
Let (X,7) be a topological space. A subset A of the space X is
said to be b-open if A int(cl(A)) cl(int(A)) and b-closed if
int(cl(A)) cl(int(A)) A.

DEFINITION 2.2[6]:

Let (X,1) be a topological space. A subset Aof X is said to be
generalized closed (briefly g-closed) if cl(A) C U whenever
ASUandUisopenin (X,7).The complement of g-closed set is
g-open.

DEFINITION 2.3[4]: If Aisasubset ofX,

(i) The generalized closure of A is defined as the intersection
of all g-closed sets in X containing A and is denoted by
cl*(A).

(ii) The generalized interior of A is defined as the union of all
g-open sets in X that are contained in A and is denoted by
int*(A).

DEFINITION 2.4:
Let (X,7) be a topological space. A subset A of the space X is
said to be semi*-open[5] if Accl*(int(A)) and semi*-closed

[4]if int*(c1(A))cA.

DEFINITION 2.5[4]:

Let (X,t) be atopological space and A<X.Then

(i) The semi*-closure of A is defined as the intersection of all
semi*-closed sets in X containing A. It is denoted by

l

s*cl(A).
(ii) The semi*-interior of A is defined as the union of all
semi*-opensets containedin A.Itis denoted by s*int(&).
DEFINITION 2.6[7]:
A subset A of a topological space (X,7) is said to be
generalized semi star b-closed (briefly gs*b-closed) if
s*cl(A) SUwhenever ASUand Uisb-openin (X,1).

DEFINITION 2.7[7]:

A subset A of (X,7) is said to be generalized semi star b-open
(briefly gs*b-open) set if its complement X\A is gs*b-closed
in X.The family of all gs*b-open sets in X is denoted by gs*b-
Oo(X).

DEFINITION 2.8[8]:

Let A be a subset of a topological space (X,t). Then the union
ofall gs*b-open sets contained in A is called the gs*b-interior
of A and it is denoted by gs*bintA. That is, gs*bint(A)=0{V:V
cAandVEgs*b-O(X)}.

DEFINITION 2.9[8]:

Let A be a subset of a topological space (X,t). Then the
intersection of all gs*b-closed sets in X containing A is called
the gs*b-closure of A and it is denoted by gs*bcl (A). That is,

gs*bcl (B)= NF:AS{FandF €gs*b-C(X)}.

THEOREM 2.10[8]:

Let Abe asubsetofatopological space (X,1). Then
1) Aisgs*b-openifandonlyifgs*bint(A)=A

2) Aisgs*b-closedifandonlyifgs*bcl(A)=A.

THEOREM 2.11[7]:
For every element x in a space X, X—{x} is gs*b-closed or b-
open.

DEFINITION 2.12[8]:

LetXbe atopological space andletx€X. Asubset N of X is said
to be a gs*b-neighborhood (shortly, gs*b-nbhd) of x if there
exists a gs*b-openset Usuch that xEUSN.

THEOREM 2.13[1]:Every closed setis b-closed.

3.GENERALIZED SEMISTARb-T, SPACES

DEFINITION 3.1:

A topological space (X,1)is said tobe

I) gs*b-T, if for each pair of distinct points x, y in X, there
exista gs*b-openset Uin X such that either x©U and y¢U
orxéUandy<U.

(i) gs*b-T, if for each pair of distinct points x, y in X, there
exist two gs*b-open sets U and V in X such that xS U but
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yeUandxEVbuty<EVv.

(iii) gs*b-T, if for each pair of distinct points x, y in X, there
exist two disjoint gs*b-open sets U and V in X such that
xEUbuty¢UandxeVbutyEV.

(iv) gs*b-T, ,if every gs*b-closed setis b-closed.

(v) gs*b-spaceifeverygs*b-opensetisopen.

THEOREM 3.2:
A topological space (X,1) is gs*b-T, if and only if for each pair
of distinct points x,y in X, gs*bcl({x}) #gs*bcl({y}).

PROOF:NECESSITY:

Suppose X is gs*b-T, and x,y are any two distinct points of X.
Then there exists a gs*b-open set U containing x or y, say x but
not y. Since U is gs*b-open, X\U is a gs*b-closed set which
does not contain x but contains y. Since gs*bcl({y}) is the
smallest gs*b-closed set containing y, gs*bcl({y}) EX\U.Then
x&gs*bcl({y}).Hence gs*bcl({x}) #gs*bcl({y}).

SUFFICIENCY:

Suppose that x,yEX with x#y and gs*bcl({x})#gs*bcl({y}).
Then there exists a point z&EX such that zEgs*bcl({x}) but
zégs*bcel({y}). Now, we claim that x€&gs*bcl({y}). If
xEgs*bcl({y}), then gs*bcl({x}) Sgs*bel({y}). This implies,
z&gs*bcl({y}), which contradicts z¢gs*bcl({y}). Therefore
x€gs*bel({y}).Since gs*bcel({y}) is gs*b-closed set containing
y but not x, then X\gs*bcl({y}) is a gs*b-open set containing x
butnoty.Hence Xis a gs*b-T,space.

THEOREM 3.3:
A topological space (X,t) is gs*b-T, if and only if the
singletons are gs*b-closed sets.

PROOF:

Let (X,7) be a gs*b-T, space and x be any point of X. Let
yEX\{x}. Then x#y and so there exists a gs*b-open set U,
containing y but not x. That is yEU,SX\{x}. This implies,
X\{x}=U{U,/yEX\{x}}. Since the union of gs*b-open sets is
gs*b-open, then X\{x} is gs*b-open containing y but not x.
Hence {x} is gs*b-closed in X. Conversely, suppose {p} is
gs*b-closed, for every pEX. Let x,yEX with x#y. Then
yEX\{x} and x&EX\{y}. Since {x} and {y} are gs*b-closed sets
in X, then X\{x} and X\{y} are gs*b-open sets in X. Thus, we
have a gs*b-open set containing x but not y and a gs*b-open
set containing y but not x. Hence Xis a gs*b-T, space.

THEOREM 3.4:
A topological space (X,1) is gs*b-T,, if each singleton {x} of X
is either b-closed or b-open.

PROOF: Let (X,7) isags*b-T, , space.

CASE (I):

Suppose {x} is not b-closed. Then X\{x} is not b-open. By
Theorem 2.11, X\{x} is gs*b-closed. Since X is a gs*b-T,,
space, then X\{x} is b-closed and hence {x} is b-open.

CASE (II):

Suppose {x} is not b-open. Then X\{x} is not b-closed. By
Theorem 2.11, X\{x} is gs*b-open in X. Since X is a gs*b-T,,,
space,then X\{x}is b-open and hence {x}is b-closed.

THEOREM 3.5:

The following statements are equivalent for a topological

space X.

(i) Xisgs*b-T,.

(ii) For each x€X and y#x, there exists a gs*b-open set U
containing x such that y&gs*bcl(U).

(ili)For each x<€X, N{gs*bcl(U)/U&gs*b-O(X,r) and

xEU={x}.

PROOF:

(i)=(ii): Suppose X is gs*b-T,. Then for x,y &X with x#y.Then
there exists disjoint gs*b-opensets UandV containingxandy
respectively. Since V is gs*b-open, then X\V is gs*b-closed
containing U. Hence gs*bcl(U) ©X\V. Since yEV, then y&X\V
and hence y¢gs*bcl(U).

(ii)=(iii): If there exists an element y # x in X such that
yEN{gs*bcl(U)/U&gs*b-O(X) and x&U}, then y&gs*bcl(U)
for every gs*b-open set U containing x. This contradicts our
assumption. So there exists no such an element y. This proves

(ii).

(iii)=(I): Let x,y €X with x#y. Then by our assumption, there
exists a gs*b-open set U containing x such that y&gs*bcl(U).
LetV=X\gs*bcl(U).ThenV is gs*b-open set containing y. Also
xE€U and UNV= ¢. Thus we have a disjoint gs*b-open sets U
and V containing x and y respectively. Hence X is a gs*b-T,
space.

REMARK 3.6: Every gs*b-T, space is gs*b-T,.
THEOREM 3.1:Every gs*b-space is gs*b-T,,.

PROOF:

Let (X,1) be a gs*b-space and A be any gs*b-closed set in X.
ThenX\A is gs*b-openin X.Since X is gs*b-space, then X\A is
open in X and so A is closed. By Theorem 2.13, A is b-closed.
This shows that Xis gs*b-T, ,.

4.GENERALIZED SEMISTARb-D, SPACES
DEFINITION4.1:

A subset A of atopological space X is called a gs*b-difference
set(briefly gs*b-D-set) if there exists U,V &gs*b-O(X) such
thatU#X and A=U\V.

THEOREM 4.2: Every proper gs*b-opensetis gs*b-D-set.

PROOF:

Let A be any proper gs*b-open subset of a topological space
X.Take U=A and V= ¢.Then A=U\V and U#X.Hence A is gs*b-
D-set.

REMARKA4.3:
The converse of the above theorem need not be true which is
shown in the following example.

EXAMPLE 4.4:

Let X={a,b,c,d} with a topology 1= {9,{a},{b},{a,b}, {b,c},{a,b,c},
{b,c,d},X}.Thengs*b-O(X,1)= {¢,{a}, {b}.{a,b}, {b,c},{b,d}, {a,b,
c},{a,b,d},{b,c,d} ,X}.Take U={a,b,d} and V={a,b,c}.Then U #X
and A=U\V={a,b,d}\{a,b,c}={d} is gs*b-D-set but not a gs*b-
openset.

DEFINITION 4.5: A topological space (X, 1) is said to be

(I) gs*b-D, if for any pair of distinct points x and y of X there
exist a gs*b-D-set of X containing x but not y or a gs*b-D-
set of X containing y butnot x.

(ii) gs*b-D, if for any pair of distinct points x and y of X there
exist a gs*b-D-set of X containing x but not y and a gs*b-
D-set of X containing y but not x.

(iii) gs*b-D, if for any pair of distinct points x and y of X, there
exist disjoint gs*b-D-sets G and E of X containing x and y
respectively.

THEOREM 4.6: Ina topological space (X,1),
(1) if(X,7)isgs*b-T,,thenitisgs*b-D,,fork=0,1,2.
(i) if (X,7)isgs*b-D,,thenitisgs*b-D,,,fork=1,2.

PROOF:
(i) First we prove the result for k=0. Suppose (X,1) is gs*b-T,.

Then for each pair of distinct points x, y in X, there exists a
|
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gs*b-open set U such that either x<U and y¢U or yEU
and x¢U. By Theorem 4.2, U is gs*b-D-set in X. Then we
have for each pair of distinct points x, y in X, there exists a
gs*b-D-set U such that either x&U and y¢U or y<U and
x&U. Hence (X,7) is a gs*b-D, space. Similarly we can
prove that every gs*b-T, space is gs*b-D, space, for
k=1,2.

(ii) Let k=2. Suppose (X,1) is a gs*b-D, space. Then for any
pair of distinct points x and y of X, there exists disjoint
gs*b-D-sets U and V of X containing x and y respectively.
That is for any pair of distinct points x and y of X, there
exists a gs*b-D-set U of X containing x but not y and a
gs*b-D-set V of X containing y but not x. Hence (X,7) is a
gs*b-D, space. Similarly we can prove that every gs*b-D,
spaceisags*b-D,space.

THEOREM 4.1: Aspace Xisgs*b-D,ifand onlyifitis gs*b-T,.

PROOF:NECESSITY:

Suppose that X is gs*b-D,. Then for each distinct pair x,yEX
there is a gs*b-D-set G containing x or y, say x but not y. Since
G is gs*b-D-set, then there are two gs*b-open sets U, and U,
such that U,#X and G=U\U,.Since x€G andy¢G,thenx<U,.
For y¢G,we have two cases,

(@ ye€U,

(b) yEU,andyEU,.

In case(a),xEU, and y¢U,.In case(b), y=EU, and x¢U,. Thus in
both cases we have for each pair of distinct points xand y in X,
there exists a gs*b-open set U, containing x but not y or a
gs*b-openset U, containing y but not x. Hence X is gs*b-T,.

SUFFICIENCY:
Suppose (X,1) is gs*b-T,.Then by Theorem 4.6 (i), (X,1) is gs*b-

o+

THEOREM 4.8:
AspaceXisgs*b-D, ifand onlyifitis gs*b-D,.

PROOF:NECESSITY:

Let x, yEX, with x#y. Then there exist gs*b-D -sets G,,G,in X
such that x€G,, y¢G, and y=G,, x¢G,. Since G, and G, are
gs*b-D-sets, then G,= U \U, and G,=U,\U,, where U,,U,, U, and
U, are gs*b-open sets in X. From x€¢G,, it follows that either
x€¢U, or x&U,and x&U,.We discuss the two cases separately.

(I)SUPPOSEX<¢U,.FORY<G, WE HAVETWO SUB-CASES:

(a) Suppose y«U,. Since xSU\U,, it follows that xSU\
(U,UU,), and since y<=U,\U, we have y<=U,\(U,UU,). Since
the union of gs*b-open sets is gs*b-open set, then U,UU,
and U,UU, are gs*b-open sets. Also (U,\(U,UU,))
N(U,\(UUU))=¢. Thus we have disjoint gs*b-D-sets U\
(U,UU,) and U,\(U,uU,) containing x and y respectively.

(b) If yEU, and y<U,, we have x=U\U,, and y<U,. Also (U\
U,)NU, = ¢.Thus we have disjoint gs*b-D-sets U \U,and U,
containing x and y respectively.

(ii) Suppose x<U, and x€U,. We have yEU,\U, and x€U,.
Hence (U,\U,)NU,= ¢. Thus we have disjoint gs*b-D-sets
U, and U,\U, containing x and y respectively. Hence X is
gs*b-D,.

SUFFICIENCY:
Suppose Xis gs*b-D,.Then by Theorem 4.6(ii), X is gs*b-D,.

DEFINITION 4.9:
A point x=X which has only X as the gs*b-neighborhood is
called ags*b-neat point.

THEOREM4.10:
For a gs*b-T,space (X,1) the following are equivalent:
I (X,t)isgs*b-D,.

(i) (X,7)hasnogs*b-neatpoint.

PROOF:

(i)=(ii). Since (X,7) is gs*b-D,, then each point x of X is
contained in a gs*b-D-set A = U\V and thus in U. By definition
U#X.This implies that x isnot a gs*b-neat point.

(ii)=(I) Suppose (X,1) has no gs*b-neat point. Let x and y be
distinct points in X.Since X is gs*b-T,, then there exists a gs*b-
open set U containing x or y, say x. Since y&U, then U#X. By
Theorem4.2,Uis a gs*b-D-set.Since X has no gs*b-neat point,
then y is not a gs*b-neat point. This means that there exists a
gs*b-neighborhood V of y such that V£X. Since V is a gs*b-
nbhd of y, there exists a gs*b-open set G such that y&GcV.

Thus yEG\U but not x. Also G\U is a gs*b-D-set. Hence X is a
gs*b-D, space.

COROLLARY4.11:
A gs*b-T, space Xisnot gs*b-D, if and only if there is a unique
gs*b-neatpointinX.

PROOF:

Suppose (X, 1) be a gs*b-T, space. But (X,1) is not a gs*b-D,.
Then by the above theorem (X,7) has a gs*b-neat point. Now we
have to prove the uniqueness. Suppose x and y are two
different gs*b-neat points in X. Since X is gs*b-T,, at least one
of x and y, say x, has a gs*b-open set U containing x but not y.
Then U is a gs*b-nbhd of x and U#X.Therefore x is not a gs*b-
neat point which contradicts x is a gs*b-neat point. Hence x=y.
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