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B4 | Here, in this research paper, we have applied the Gibbs Sampling Technique and RWM-H (Random Walk Metropolis -
O Hasting) Algorithm for the Bayesian Estimation of m, 31, B2 and 1/2. Also we have assumed that at some point of time say
E 'm', the co-efficient of regression changes from (31 to f2. Further, we have discussed about the effects of prior information
s onthe Bayes estimates on the basis of the TPLR (Two Phase Linear Regression) Model with a Bayesian approach.
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INTRODUCTION:

The regression coefficients are assumed constant as far as regression analysis is concerned, in general practice. A model can be suggested on the
basis of the theoretical or empirical deliberations as far as real life situations are concerned. Here, we note that the model changes occasionally in
either one or more of its parameters, most of the times. Generally, we all know that regression analysis is widely applicable in the fields of social,
medical and engineering science. Here, we have emphasized on the point where the unknown change occurred and so we have focused on the
shift point parameter. It is so because regression analysis indexes when or where the unknown change occurred in the system.

The Gibbs sampling technique for generating random variables from a marginal distribution is applied here in an indirect manner. Further, we
note that we are not calculating the density. We have taken an assumption that we have a joint density as f(x, ¥y, .., ¥,) and we want to obtain
characteristic values of the marginal density

f@ =TSy y,) dy, .. dy, (¢))

It may be mean or variance. In general, it may be considered as the most natural and straightforward approach to calculate f(x) and use it to
obtain the desired characteristic values. There are many cases where the analytical and numerical integration in (1) are very much difficult to
perform in practice. Therefore, we have applied Gibbs sampler in such cases as it provides an alternative method to obtain f(x).

On the basis of some research done in the past, we have assumed that we already have some technical knowledge about the parameter of the
models which are already available. We have taken some notable references of researchers such as Arnold Zellner (1971), A.F.M. Smith (1980)
and A.K. Bansal and S. Chakravarty (1996) who have studied the Bayesian estimation for the regression coefficient and change point of the
TPLR model.

Now-a-days, simulation has become an increasingly important technique as an alternative to numerical as well as analytical approximation
techniques. In this paper, we have shown how the routine Bayesian Analysis of the Two Phase Linear Regression (TPLR) model is made
possible using simulation methods based on Markov Chain Monte Carlo (MICMC) technique. In the last decade, there has been a significant
growth of interest in MCMC methods which include further refinements of standard Monte Carlo sampling techniques. We can say so very clearly
from the developments which have taken place in the last decade.

It was the joint research work of Gelfand and Smith (1990) that gave the realization that Markov Chain could be used in wide variety of situations
through their research studies and conclusions. Bayesian Analysis for the Block and Basu Bivariate Exponential distribution was done by Jorge
A. Achcar and Roseli A. Leandro (1998) using Metropolis Algorithm with Gibbs steps and sampling technique. S.K. Upadhyay and N.
Vasistha (2000) have worked jointly to overcome the computational difficulties using simulation approaches to Bayesian computation in
reliability models, using MCMC methods. The understanding of how the development of Monte Carlo Methodology did not change our solution
to the problems, but it changed the way of our thinking about the problems was given by Christian Robert and George Casella (2011).

TWO PHASE LINEAR REGRESSION MODEL:
‘We shall consider the following Two Phase Linear Regression (TPLR) Model for our study.

BiX.+e t=12...m

Ye= X + € t=m+1m+2,..n

@

Here, X, is a non-stochastic explanatory variable. §, and 8, are the regression parameters where §; # f8,. The independently and identically
distributed random errors are shown as €, which follow the Normal distribution, i.e. N(0, ¢%). Further, we note that variance is strictly positive,
ie (¢* > 0).

BAYES ESTIMATION:

The likelihood function of gz, #2, o2 and “m’ on the basis of the sample information Z = (x;, yy), where = 1, 2, ..., m, m+1, ..., n is taken as
under:

L(By, Ba, 02 m|Z) = — (e_z_zﬂrz).(cr’"). exp[féﬂf qﬂ) + B Sﬂ)].exp[%lﬁf (';”%.;ml) + f; (gf:”;)] 3)

P o2 52
where,

S = XK, %2, Sz = ZE xi,

Sz = Smz - Sma = Sz — Sma

A=TL v 4

APPLICATION OF GAMMA PRIOR ON 1/c° AND INFORMATIVE PRIORS ON 1 AND 2 WITH UNKNOWN o 2:

Here, the TPLR model (2) is taken into consideration with unknown =2 just as it was used by Broemeling et.al. (1987). Further, uniform prior
1

for change point “n’ is assumed as g(m) = =
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Moreover, we have normal prior density on p; and B> as,

Ly

= e 1
9(B1) V2o,
1 -1 (M)z
= e 2\ o2
96 = o
Further, we assume the Gamma (¢, d) prior for% as under:
g
d-1

1 ct/1 _c
i) -7E) 7 o

Also we note that ¢ and d are the hyper parameter which can be obtained by using following relations:

1 1
d==, c=— .
02 11202

‘We note that y; and @ are prior mean and prior coefficient of variation of ﬁ respectively.
Hence, joint prior p.d.f. of f1, f2, 6~ 2 and 9n’ will be:
a _1 m—m)z _1 Ez;#z)z

e 2\ o1 e 2\ oz

9By, Bz, 07%,m) = ©)]
Using Likelihood function (3) with the joint prior density, the joint posterior density of £, f,, 0 2, m say g (B, B2,0 2, m|Z) will be:

c
2oy a202( =D rd (n—-1)

A+B

9By, B, 072 mIZ) = K, [e [~ 582781+ Fady] e [ 5 B2? B2 + B e_ﬁ(T +c)a—z('§+ dil)]/hl(z) ©)

where,
e (RG]
(2m)"/ 2207 d (n—1)
a=b4 Bi=75+ %
4= & B, = r +
A= I8, v B = .Sy + 2B Sma + B2 Sz — Sma) + 2B2Sma @)

h,(Z) is the marginal density of z given by,
ha(Z) =02 2 S L(Bu B 02 mIZ) . g(By, o0 %, m) dBrdByda

:Z;an—:].lff 9[*%31251+£1A1] dg, fj‘ e[*%f?ZZEZJrEzAz] dp, f;’ce—y—lz,(ﬁlzﬂ*'f)afZ(;er*l)dg—z

®

Marginal posterior of 8, 8,,0 ~2and 'm’ respectively will be:

[orn ol 3o ebun] 7 oot g, mg A4 )3 0) 4]
= — 0

9(B11Z) = I Z) €)]

T PR TP AT E N R

a(Balz) = — (10)
[E"m_:ll eiﬁ(ﬁﬂ)ﬁfz(gm_l} ffwe[_%&ZElerAl] dpy f:ce[_%ﬂzz 2+ fat] dﬂz]

2|7} —

o(e?12) = — (a1
[fie[*%31251+31:41] B, J‘j‘me[’%BZZEZJrBZAZ] dg, f:e_a_lz(g*'c)g’z(g*dﬂ) dcf‘z]

g(miz) = o (12)

Now, the Bayes estimator of any function of parameter @, say g(a) under the squared loss function will be:

E.(9(al)) = [ a(g(alZ))da 3)

where, g(@|Z) is marginal posterior density of a. It is little complicated to compute the equation (13) analytically in this case. Therefore, we
propose to use Gibbs sampling and MCMC methods to find the Bayes estimators of #1, £, &~ and ‘m’.

ALGORITHM USING GIBBS SAMPLING:

The Gibbs sampling procedure is implemented and therefore we re-write (9) as full conditional of §; by fixing all other parameters, i.e. B, ¢ >
and ‘m’. Hence, full conditional density of B, given 8,, ¢ 2 and ‘m’ will be as follows:

1

91 B0 %m.2) «N(’;—i (%) ) a4

where A4: and By are given in equation (7).

Further, we also re-write (10) as full conditional density of B2 and by fixing all other parameters p1, 6% and ‘m’, we get the full conditional density
of B2 given P1, o> and *m’ as follows:

2
9(Bs | Byyo 2 m,Z) <N (’;— (%) ) (15)
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where 42 and Bzare given in equation (7).

Now, we re-write (11) as full conditional density of % and by fixing parameters £, 2 and ‘m’, we get the full conditional density of o7 given
B1, B2 and “m’ is as follows,

g(a2| By, Bom, Z) o« gamma (2 +d ,—;HB ) (16)
[oh e
2

where, values of 4 and B are given in equation (7).

We apply Gibbs sampling to generate sample from the full conditional density of £, B> and 62 given respectively in (14), (15) and (16). In
order to estimate the parameters 8, #, and 2 we use following algorithm:

ALGORITHM:
Initialize B; = B9, Bz = 20,0 2 = a5 andm = my,, then,
2z
. . L e S )

STEP 1: Generate f,~N (51 , (\/5—1) ) using Gibbs Sampling.

4 1\?
STEP 2: Generate f,~N (B—z s (\/?2) ) using Gibbs Sampling.
STEP 3: Generate 6 2~gamma (g +d, ?1]“ ) using Gibbs Sampling.

Tz

STEP 4: Repeat the above steps.

APPLICATION OF MCMC TECHNIQUES:

There is no closed form of posterior distribution of change point (12). That is why we need to propose the use of MCMC techniques to generate
the samples from the posterior distribution. To implement the MCMC techniques, we re-write (12) as target function of “m’, by fixing all other
parameters i.e. B, B2, and o 2. Hence full target function of ‘m’ given B;, Bz, and o2 will be as follows:

_ L ATE n
gim| o2, BB Z) x e EAa }072(§+d7n Gim Gom

452
w 1 5 1 Y o 2B,
Gom = f e[—5812(0—;+$) +ﬁ’1(g—”£3)] dB, = [ g[—%ﬁ'ﬁm +.81A1] dB, = e2B1\/2r
. . N
Sp1—5 5 4 5
ow 1 Sp1—3 1 B "
Gan = f E[_EBZZ (%—i?)-#{?;(o_—”?)] dp, = j e[*%ﬂzzﬁ’z Jr.5’2-’42] dp, = e’fvan
. = JB
1 A+B n %jr %Er
= _ e By g 142 242
gm 1072 fy fr,2) o & 2120 gHOT IS BT EZET 1)
where 4, B, A1, B1, A2 and Bzare given in equation (7).
SOLUTION OF A NUMERICAL EXAMPLE:
The two phase linear regression model is assumed as under:
_{3xz+fz. t=1,234
YT 3.5x,+¢, t=56,.,615

Here, the independently and identically distributed random errors which follow Normal Distribution N (0, 1) and are denoted by €,. The generated
observations are precisely given in TABLE 1. 8, and 8, themselves were random observations from standard normal distribution with ge,=0 and

standard deviation ¢ =I and precision ﬁ was from gamma distribution with (prior mean gtz = 1 and 8% = 0.02). Also ¢ =50 and d = 50.
TABLE 1
DATA GENERATED FROM THE TPLR MODEL

T| % | Xt T| x Yi t| x Yt T | x Ye t X Ye

1 171464 33|80 7142|1390 | 10|48 | 1640 |13 |6.0|17.99
2 221645 13913758 |45 1418 (1151|1690 | 14| 6.2 | 18.92
3 271696 | 411127 (9|47 1545 (12| 52|1732|15] 6.5 19.36

From the above table, it is quite clear that a random sample of size # = 100 is generated fiom g (m | 672, Z) using the Random Walk Metropolis
- Hasting (RWNM-H) algorithm for 5000 times each. Further, we observe that the selected proposal is U (1, 14) which is same as the prior and
it is symmetric around 7.5. Also, we note from the above table that the initial distribution is chosen as U (1, 14) since the target function is
bounded. Moreover, the initial distribution is truncated and then we obtain the integer value of the Bayes Estimate of change point m’as 4 when
selected proposal is U (1, 14) and initial distribution is U (3, 14). The data given in TABLE 1 has its results in TABLE 2 when given values are
taken as B, =2, B, =3 and 6 = 2.

TABLE 2
BAYES ESTIMATES OF CHANGE POINT ‘m’ USING RWM-H ALGORITHM UNDER SQUARED ERROR LOSS FUNCTION

Selected Initial Bayes Estimate of Change g;?f::t;}ail;; o_}éf;:e:

Proposal Distribution Point ‘m’ e 8
Point ‘m

U(1,14) U (1,14) 1.66 2

U (1.14) U(2.14) 2.65 3
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U(1.14) U (2.14) 2.65 3
U (1,14) U (3,14) 3.55 4

The results where the Bayes Estimates of ‘m’ are computed using RWM-H algorithm for the different prior under consideration for the data
given in TABLE 1 are shown i following TABLE 3.

TABLE 3

BAYESESTIMATES OF CHANGE POINT m’ USING RWM-H ALGORITHM UNDER SQUARED ERROR LOSS FUNCTION FOR
DIFFERENT PRIOR UNDER CONSIDERATION

Serial Number |y | 1z | 012 0,2 Bayes Estimate of Change Point ‘m’
(Posterior Mean)
1 0 0 1000 | 12000 | 4
2 2 3 1000 | 12000 | 4
3 2 3 4 9 4
4 2 3 1 9 4
5 3 0.09 | 0.09 4
6 2 3 0.01 | 0.09 4
7 20 |30 [0.01 |0.09 4
8 0.2]03[0.01 |0.09 4

Here, we have used Gibbs Sampling Technique and MCMC algorithm for the different prior under consideration for the data given in TABLE
1 where we have computed the Bayes Estimates of 8, and 8, (when given value of 8, = 3, m = 4 and ¢ = 2). The results are shown below in
TABLE 4.

TABLE 4

BAYES ESTIMATES OF B; AND §, USING GIBBS SAMPLING TECHNIQUE AND MCMC ALGORITHM UNDER SQUARED
ERROR LOSS FUNCTION FOR DIFFERENT PRIOR UNDER CONSIDERATION

Serial . . Bayes Estimates of Standard Deviation of Bayes Estimates of
Numper | 1 | F2 | 71 72 B, B o2 By B, o2

1 0 0 1000 | 12,000 | 2.573 3.168 | 2.348 | 0.237 0.112 0.022

2 2 3 1000 | 12,000 | 2.573 3.168 | 2.348 | 0.237 0.112 0.022

3 2 3 4 9 2.562 3.168 | 2.348 | 0.235 0.112 0.022

4 2 3 1 9 2.568 3.168 | 2.348 | 0.236 0.112 0.022

5 3 0.09 | 0.09 2.309 3.156 | 2.348 | 0.175 0.108 0.022

6 2 3 0.01 0.09 2.065 3.156 | 2.348 | 0.081 0.108 0.022

7 20 |30 |0.01 |0.09 17.963 | 5.074 | 2.348 | 0.081 0.108 0.022

8 0.2 {03 |0.01 |0.09 0.475 2.964 | 2.348 | 0.081 0.108 0.022

Here also we have used Gibbs Sampling Technique and MCMC algorithm for different prior under consideration for the data given in TABLE
1 and computed the Bayes Estimates of o> when given value of #; =2, #, =3 and m = 4. The results are shown below in TABLE 5.

TABLE 5§

BAYES ESTIMATES OF ¢? USING GIBBS SAMPLING TECHNIQUE AND MCMC ALGORITHM UNDER SQUARED ERROR
LOSS FUNCTION FOR DIFFERENT PRIOR UNDER CONSIDERATION

Bayes Estimates of | Standard Deviation of Bayes estimates of
Serial Number | iy @? c D o2 o2
1 0.0002 5000 | 5000 | 2.34 0.032
2 0.1 | 0.002 5000 | 500 | 1.44 0.020
3 0.5 | 0.002 1000 | 500 [ 7.18 0.231
4 5 0.002 100 [ 500 | 67.72 6.727
5 50 | 0.0002 100 | 5000 | 109.86 10913
6 5 0.0002 1000 | 5000 | 11.66 0.374
7 2 0.0002 2500 | 5000 [ 4.68 0.090
8 1.67 | 0.0002 3000 | 5000 | 3.90 0.069
9 0.6 | 0.000333 | 5000 | 3000 | 1.94 0.027
10 0.5 | 0.0004 5000 | 2500 | 1.84 0.026
11 0.1 | 0.002 5000 | 500 | 1.44 0.020
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GRAPHS AND INTERPRETATIONS

Here, GRAPH 1 shows the full conditional of 8, when a sample of size 70,000 was generated from g(f, | B5,6°%,m, Z). Also, Gibbs Sampling
with MCMC algorithm showed the results 8, = 3,6 =2, m =4

Figure 1: Full Conditional of #;
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Here, GRAPH 2 shows the full conditional of #, when a sample of size 16,000 was generated from g(B, |By,67%,m, Z). Also, Gibbs Sampling
with MCMC algorithm showed the results #; = 2, 6> =2, m =4

Figure 2: Full Conditional of §,
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Here, GRAPH 3 shows the full conditional of 62 when a sample of size 10,000 was generated from g(a 2| By, B2, m, Z). Also, Gibbs Sampling
with MCMC algorithm showed the results 8, = 2, B8, =3, m = 4

Figure 3: Full Conditional of 02
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