
A
B

ST
R

A
C

T

Presently computer vision is amongst the hottest topics in Artificial Intelligence and is being extensively used in
Robotics, Detecting Objects, Classification of Images, Autonomous Vehicles & tracking, Semantic Segmentation along
with photo correction in various apps. In Self driven cars/ vehicles, vision remains the main source of information for
detecting lanes, traffic lights, pedestrian crossing and other visual features. [2]

ORIGINAL RESEARCH PAPER Engineering

DETECTION OF LANE LINES FOR SELF-
DRIVING CARS BY USING EFFECTIVE
COMPUTER VISION TECHNIQUES WITH
OPENCV IN PYTHON

KEY WORDS: Computer
Vision, OpenCV, Lane Detection,
Gradient and HLS Thresholding,
Artificial Intelligence, Self driving
vehicles,

I. INTRODUCTIONS
Innovations are powered by Science and they happen
continuously with necessity of present requirement. One such
future technological innovation is detection of driving lane
lines by vehicle they could be manual or self driven. For
example Self-driving cars, which are capable of navigating
through the roads, sensing environmental inputs, fulfill the
transportation capabilities without any human efforts. These
vehicles analyse its surrounding through camera's, RADAR's,
LIDAR's, GPS and process its navigational paths according to
the data without any human support. This could be making a
huge impact in the people lives who are differently able.
Presently everyone is aware with Tesla, Google and others
companies work in self -driving cars like Tesla Model S whose
Autopilot handles highway driving and many more. Its main
tasks include an automated vehicle that increases safety and
reduce road accidents, and thus saving lives. In days to come
many more complex and challenging tasks of road lane
detection or boundaries detection related to self driven
vehicles could be resolved. [3]

II. LITERATURE OVERVIEW
OpenCV refers to “Open Source Computer Vision” which is a
library for computer vision and machine learning software's
invented by Intel in 1999. OpenCV consists of C++, Python,
Java and MATLAB interfaces and is supported by Windows,
Linux, Android, and Mac OS.

Computer Vision is an allied field of Artificial Intelligence
which trains the machines to interpret and understand the
real-world scenarios. Its combines various techniques like
cameras, videos along with deep learning models machines
that could accurately identify, classify objects automatically
and then decisions considering the data interpretation. Today
computer vision technology is used for various purposes like
Image segmentation, object detection, Edge detection, Facial
recognition, Pattern detection etc.

Lane detection Implementation undoubtedly Lane lines are
important part of indicating a traffic flow while driving any
vehicle. To avoid accidents it is essential to remain in a single
lane and to avoid crossing lanes. OpenCV and Python are
good starting point for building your own self driving to
design lane detection cars. Refer figure1

Figure 1: road images (first row) along with their detected
lanes (second row):

I. RESEARCH OVERVIEW
There are multiple ways to perform lane detection either by
using Learning-based approaches, such as training a deep
learning model on an annotated video dataset or use a pre-
trained model Simple Lane Detection is an detection
technique which detects straight lane. We will be using
“Atom” text editor or “Sublime” whatever you like working
with. The purpose of this is to develop a program that can
identify lane lines in a picture or a video. Here's the structure
of our lane detection pipeline.

Step 1: Reading Images: in general, when humans drive, they
use eyes and common sense to drive. These inputs can easily
identify the lanes on the roads and do the steering along the
road. But for machines, it's a difficult task hence here
computer vision comes into picture.

Figure 2: frame from the video

Step 2: Generally we have four lanes separated by white-
colored lane markings. So, to detect a lane, we must detect the
white markings on either side of that lane. Important question
is how to detect the lane markings?

Step 3: There can be so many other objects in the scene apart
from the lane markings like, vehicles on the road, road-side
barriers, street-lights, etc. Also in real time scenarios/ video, a
scene changes at frame by frame.

Step 4: Hence, before solving the lane detection problem
solution for finding ways to ignore the unwanted objects from
the driving scene had been determined.

Figure 3

Step 5: This can be done by narrowing down the area of
interest. Instead of working with the entire frame, we can work
with only a part of the frame. In the image below, apart from
the lane markings, everything else has been hidden in the
frame. As the vehicle would move, the lane markings would
fall more or less in this area only[4]

www.worldwidejournals.com 69

Aryan Verma* Student, Shahpura, Bhopal-462039 (MP). *Corresponding Author

PARIPEX - INDIAN JOURNAL F RESEARCH | O November - 202Volume - 10 | Issue - 11 | 1 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

Reduce Noise and Smoothen Image
Images consist of Noise which causes blurring, so this need to
be removed. Image with noises creates false edges and can
ultimately impact the edge detection which is a very crucial
step in lane line detection. We will use the Gaussian Filter to
blur the image. A Gaussian filter non-uniform low pass filter.

IV. APPLICATION DESIGN
To understand the application design process refer
following steps in detail:-
1) Compute the camera calibration matrix and distortion
coefficients.
All cameras use lenses and main problem with these lenses is
that they have some radial distortion. To remove this
distortion, we used OpenCV functions on chessboard images
to calculate the correct camera matrix and distortion
coefficients. This can be achieved by finding the inside
corners within an image and using that information to un-
distort the image. Fig 4 shows the chessboard image on the
left and the inside corners within this image detected on the
right. [5]

Figure 4: Calculating the camera matrix and distortion
coefficients by detecting inside corners in a chessboard
image (Source: Udacity)

The distortion matrix was used to un-distort a calibration
image and provides a demonstration that the calibration is
correct. An example shown here in Fig 2, shows the
before/after results after applying calibration to un-distort
the chessboard image. [5]

Figure 5: Before and after results of un-distorting a
chessboard image (Source: Udacity)

2) Apply a distortion correction to raw images.
The calibration data for the camera that was collected in step
1 can be applied for raw images to apply distortion
correction. An example image is shown here in Fig 6. It may be
harder to see the effects of applying distortion correction on
raw images compared to a chessboard image, but if you look
closer at right of the image for comparison, this effect
becomes more obvious when you look at the white car that has
been slightly cropped along with the trees when the
distortion correction was applied. [5]

Figure 6: Before and after results of un-distorting an
example image (Source: Udacity)

3) Use color transforms, gradients, etc., to create a
thresholded binary image.

The idea is to create an image processing pipeline where the
lane lines can be clearly identified by the algorithm. There are
a number of different ways to get to the solution by playing
around with different gradients, thresholds and color spaces.
We experimented with a number of these techniques on
several different images and used a combination of
thresholds, color spaces, and gradients. Worked on the
following combination to create my image processing
pipeline: [5]

‘S channel’ thresholds in the HLS color space and ‘V channel’
thresholds in the HSV color space, along with gradients to
detect lane lines. For example, a final binary thresholded
image is shown in Fig 7, where the lane lines are clearly
visible. [5]

Figure 7: Before and after results of applying gradients
and thresholds to generate a binary thresholded image
(Source: Udacity)

4) Apply a perspective transform to generate a “bird’s-eye
view” of the image.

Images have perspective which causes lanes lines in an
image to appear like they are converging at a distance even
though they are parallel to each other. It is easier to detect
curvature of lane lines when this perspective is removed. This
can be achieved by transforming the image to a 2D Bird’s eye
view where the lane lines are always parallel to each other.
Since we are only interested in the lane lines, I selected four
points on the original un-distorted image and transformed
the perspective to a Bird’s eye view as shown in Fig 8 below. [5]

Figure 8: Region of interest perspective warped to
generate a Bird's-eye view (Source: Udacity)

5) Detect lane pixels and fit to find the lane boundary.
To detect the lane lines, we used convolution which is the sum
of the product of two separate signals: the window template
and the vertical slice of the pixel image. Also, the sliding
window method to apply the convolution will maximize the
number of hot pixels in each window. The window template is
slid across the image from left to right and any overlapping
values are summed together, creating the convolved signal.
The peak of the convolved signal is where the highest overlap
of pixels are and it is the most likely position for the lane
marker. Methods have been used to identify lane line pixels in
the rectified binary image. The left and right lines have been
identified and fit with a curved polynomial function. Example
images with line pixels identified with the sliding window
approach and a polynomial fit overlapped are shown in Fig 9.
[5]

Figure 9: Sliding window fit results (Source: Udacity)

70 www.worldwidejournals.com

PARIPEX - INDIAN JOURNAL F RESEARCH | O November - 202Volume - 10 | Issue - 11 | 1 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

6) Determine the curvature of the lane and vehicle position
with respect to the center of the car.

The measurements of lane lines were taken to estimate extend
of the road curve, along with the vehicle position with respect
to the center of the lane. It was assumed that the camera is
mounted at the center of the car. [5]

7) Warp the detected lane boundaries back onto the
original image and display numerical estimation of lane
curvature and vehicle position.

The fit from the rectified image has been warped back onto
the original image and plotted to identify the lane
boundaries. Fig 10 demonstrates that the lane boundaries
were correctly identified and warped back on to the original
image. [5]

Figure 10: Lane line boundaries warped back onto
original image (Source: Udacity)

An example image with lanes, curvature, and position from
center is shown in Fig 11.

Figure 11: Detected lane lines overlapped on to the
original image along with curvature radius and position
of the car (Source: Udacity)

The above process was applied to each frame of a video and
the end results with the key steps are useful to predict model
across different frames. [5]

V. CODING
import cv2
import numpy as np
def make_coordinates(image,line_parameters):
 #slope,intercept=line_parameters
 try:
 slope, intercept = line_parameters
 except TypeError:
 slope, intercept = 0,0
 y1=image.shape[0]
 y2=int(y1*(3/5))
 x1=int((y1-intercept)/slope)
 x2=int((y2-intercept)/slope)
 return np.array([x1,y1,x2,y2])
def average_slope_intercept(image,lines):
 left_fit=[]
 right_fit=[]
 for line in lines:
 x1,y1,x2,y2=line.reshape(4)
 parameters=np.polyfit((x1,x2),(y1,y2),1)

 slope= parameters[0]
 intercept=parameters[1]
 if slope < 0:
 left_fit.append((slope,intercept))
 else:
 right_fit.append((slope,intercept))
 left_fit_average=np.average(left_fit,axis=0)
 right_fit_average=np.average(right_fit,axis=0)
 left_line=make_coordinates(image,left_fit_average)
 right_line=make_coordinates(image,right_fit_average)
 return np.array([left_line,right_line])
 def canny(image):
 gray=cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
 blur= cv2.GaussianBlur(gray,(5,5),0)
 canny=cv2.Canny(blur,50,150)
 return canny
 def display_lines(image, lines):
 line_image=np.zeros_like(image)
 if lines is not None:
 for x1,y1,x2,y2 in lines:
 cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)
 return line_image

def region_of_interest(image):
 height=image.shape[0]

polygons=np.array([[(200,height),(1100,height),(550,250)]]
)
 mask=np.zeros_like(image)
 cv2.fillPoly(mask,polygons,255)
 masked_image= cv2.bitwise_and(image,mask)
 return masked_image
#image =cv2.imread("test_image.jpg")
#lane_image=np.copy(image)
#canny_image=canny(lane_image)
#cropped_image=region_of_interest(canny_image)
#lines=cv2.HoughLinesP(cropped_image,2,np.pi/180,100,n
p.array([]),minLineLength=40,maxLineGap=5)
#averaged_lines=average_slope_intercept(lane_image,line
s)
#line_image=display_lines(lane_image,averaged_lines)
#combo_image=cv2.addWeighted(lane_image,0.8,line_im
age,1,1)
#cv2.imshow("result",combo_image)
#cv2.waitKey(0)
cap=cv2.VideoCapture("test2.mp4")
while(cap.isOpened()):
 _,frame=cap.read()
 canny_image=canny(frame)
 cropped_image=region_of_interest(canny_image)
 lines=cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np
.array([]),minLineLength=40,maxLineGap=5)
 averaged_lines=average_slope_intercept(frame,lines)
 line_image=display_lines(frame,averaged_lines)

combo_image=cv2.addWeighted(frame,0.8,line_image,1,1)
 cv2.imshow("result",combo_image)
 if cv2.waitKey(1) == ord("q"):
 break
cap.release()
cv2.destroyAllWindows()

I. CONCLUSION
This paper intends to design an experimental Lane detection
system by using computer vision-based technologies, which
could efficiently detect the lanes on the road. It can be
synchronized with different techniques like preprocessing,
thresholding, perspective transform, etc that could be fused
together in the proposed lane detection system by detecting
the the lane line in form of binary images.

To summaries the programming the Sliding window search is
used to recognize the left and right lane on the road. The
cropping technique worked only the particular region that

www.worldwidejournals.com 71

PARIPEX - INDIAN JOURNAL F RESEARCH | O November - 202Volume - 10 | Issue - 11 | 1 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

72 www.worldwidejournals.com

consists of the lane lines.

Hence, from the experimental results, it can be concluded that
the system detects the lanes efficiently with any conditions of
the environment. The system can be applied to any road
having well-marked lines and implemented to the embedded
system for the assistance of Advanced Driver Assistance
Systems and the visually impaired people for navigation to
keep them in proper track. [1]

II. REFERENCES
[1] M. Rezwanul Haque, M. Milon Islam, K. Saeed Alam, and H. Iqbal, “A Computer

Vision based Lane Detection Approach,” Int. J. Image, Graph. Signal Process.,
vol. 11, no. 3, pp. 27–34, 2019, doi: 10.5815/ijigsp.2019.03.04.

[2] Y. Ojha, “Self Driving Cars— a Beginners guide to Computer Vision —
Finding Simple Lane Lines using Python and OpenCV | by Yogesh Ojha |
Medium,” 2019. https://medium.com/@yogeshojha/self-driving-cars-
beginners-guide-to-computer-vision-finding-simple-lane-lines-using-
python-a4977015e232 (accessed Nov. 08, 2021).

[3] D. Shrivastava, “SELF-DRIVING CARS USING OPEN CV,” Madras Scientific
Research Foundation. https://www.madrasresearch.org/post/self-dr iving-
cars-using-open-cv (accessed Nov. 03, 2021).

[4] P. Joshi, “Hands-On Tutorial on Real Time Lane Detection using OpenCV,”
2020. https://www.analyticsvidhya.com/blog/2020/05/tutorial-real-time-
lane-detection-opencv/ (accessed Nov. 03, 2021).

[5] R. Uppala, “Advanced Lane Detection for Autonomous Vehicles using
Computer Vision techniques | by Raj Uppala | Towards Data Science,” 2017.
https://towardsdatascience.com/advanced-lane-detection-for-autonom
ous-vehicles-using-computer-vision-techniques-f229e4245e41 (accessed
Nov. 08, 2021).

PARIPEX - INDIAN JOURNAL F RESEARCH | O November - 202Volume - 10 | Issue - 11 | 1 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

