		ORIGINAL RESEARCH PAPER	Mathematics
		CALCULATION OF ELLIPSE CIRCUMFERENCE AS A CYLINDRICAL SECTION	KEY WORDS: Ellipse circumference, Cylindrical sections
Seyed Babak Moosavi- Toomatari		MD, Department of Surgery Tabriz Branch, Islamic Azad University, Tabriz Iran	
Seyedeh Zahra Karimi-Sarabi		MD, Anesthesiologist, Noor-e Nejat Hospital,Tabriz, Iran	
	In this article, ellipse is studied as cylindrical section and a simple formula is presented to calculate the circumference of an ellipse approximately. 2000 Mathematics Subject Classification:51N25		

Introduction
Although there is a simple and exact formula for circumference of a circle with radius $r, 2 \pi r$, exact formula for circumference of an ellipse is complex. Let semi-major and semi-minor axes of an ellipse are a and b respectively and $\mathrm{x}=a \cos (\Phi)$ and $\mathrm{y}=b \sin (\Phi)$
are its parametric equations, $0 \leq \Phi \leq \frac{\pi}{2}$, then the perimeter L of the ellipse is equal to:
$L=\int_{0}^{\frac{\pi}{2}} \sqrt{a^{2} \sin ^{2}(\Phi)+b^{2} \cos ^{2}(\Phi)} d \Phi$ [1]
Several approximations have been presented to calculate the ellipse circumference. Some of them are pointed below:

- Kepler (1609), $L=2 \pi \sqrt{a b}$
- Euler (1773), $L=\pi \sqrt{2\left(a^{2}+b^{2}\right)}$
- Sipos (1792), $L=2 \pi \frac{(a+b)^{2}}{(\sqrt{a}+\sqrt{b})^{2}}$
- Muir (1883), $L=2 \pi\left(\frac{a^{\frac{3}{2}}+b^{\frac{3}{2}}}{2}\right)^{\frac{z}{3}}$
- Peano (1889), $L=\pi\left(\frac{3(a+b)}{2}-\sqrt{a b}\right)$
- Lindner (1904), $L=\pi(a+b)\left(1+\frac{h}{8}\right)^{2}$, where $h=\left(\frac{a-b}{a+b}\right)^{2}$
- Ramanujan II (1914), $L=\pi(a+b)\left(1+\frac{3 h}{10+\sqrt{4-3 h}}\right)$, where $h=\left(\frac{a-b}{a+b}\right)^{2}$
- Selmer (1975), $L=\frac{\pi}{4}\left[\left(6+\frac{(a-b)^{2}}{2(a+b)^{2}}\right)(a+b)-\sqrt{2\left(a^{2}+3 a b+b^{2}\right)}\right]$
- Almkvist (1978), $L=2 \pi \frac{2(a+b)^{2}-(\sqrt{a}-\sqrt{b})^{4}}{(\sqrt{a}+\sqrt{b})^{2}+2 \sqrt{2(a+b)^{4} \sqrt{a k}}}$

The newest approximations are:

- Bartolomeu-Michon (2004), $L=\pi \frac{a-b}{a \tan \left(\frac{a-b}{a+b}\right.}$,
- Cantrell II (2004), $L=4(a+b)-\frac{(8-2 \pi) a b}{p(a+b)+(1-2 p) \frac{\sqrt{(a+b w)(w a+b}}{1+w}}$, where $w=74$ and $p=0.2410117$
- Sykora-Rivera (2005), $L=4 \frac{\pi a b+(a-b)^{2}}{a+b}$ [2][3]

I have tried to find a simple approximate formula by analyzing ellipse as the cylindrical section.
Ellipse as a cylindrical section
Figure 1 displays a right cylinder has been intersected by two planes, one of them is vertical to the axis of cylinder (plane A) and the other one is a plane with β angle (plane B).

Figure 1: Right regular cylinder intersected by two planes

The curve of intersection on plane A is a circle with radius b and the curve of intersection on plane B is an ellipse with semimajor axis a and semi-minor axis b. [4]

Regular polygon

Figure 2 displays a regular polygon inscribed in a circle with radius b.

Figure 2: Regular polygon inscribed in a circle
While the sides of the polygon increase, the circumference of the polygon approaches to the circumference of the circle. [5] So, we have:

Circle Circumference $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} L_{i}$, where n is the number of polygon sides.
Consider the cylinder of figure 1 with the regular polygon cross section inscribed in a circle (Figure 3).

Plane B

Plane A

Figure 3: Cylinder with regular polygon cross section
While the sides of the polygon increased, the circumference of section on plane A approaches to circumference of the circle and circumference of the section on plane B approaches to circumference of the ellipse. So, we have:

Circumference of Polygon $=\sum_{i=1}^{n} L_{i}^{\prime}$, where n is number of polygon sides.
Circumference of Ellipse $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} L_{i}^{\prime}$
For simplicity, I have displayed plane A and B on the same surface (Figure 4) and performed calculations on one quadrant (Figure 5).
|www.worldwidejournals.com|

Figure 4: Plane A and B in the same plane

Figure 5: A quadrant of right regular polygon

Figure 6: Relationship between L_{i} and $\mathrm{L}_{\mathrm{i}}{ }^{\prime}$
We need to calculate L_{i}^{\prime} base on L_{i}. According to figure 3 and figure 5, we have:
$\cos (\beta)=\frac{b}{a}=\frac{Y_{i}}{Y_{i}^{\prime}}$
$\cos (\beta)=\frac{b}{a}=\frac{Y_{i}}{Y_{i}^{\prime}} \rightarrow Y_{i}^{\prime}=Y_{i} \cdot \cos (\beta)$
$\sin \left(\alpha_{i}\right)=\frac{Y_{i}}{L_{i}} \rightarrow Y_{i}=L_{i} \cdot \sin \left(\alpha_{i}\right)$
$\sin \left(\gamma_{i}\right)=\frac{Y_{i}^{\prime}}{L_{i}^{\prime}} \rightarrow Y_{i}^{\prime}=L_{i}^{\prime} \cdot \sin \left(\gamma_{i}\right)$
Regarding to 2,3 and 4, we conclude that:
$\cos (\beta)=\frac{L_{i} \cdot \sin \left(\alpha_{i}\right)}{L_{i}^{\prime} \cdot \sin \left(\gamma_{i}\right)}$
$L_{i}^{\prime}=\frac{L_{i} \cdot \sin \left(\alpha_{i}\right)}{\cos (\beta) \sin \left(\gamma_{i}\right)}$
$\cos \left(\gamma_{i}\right)=\frac{X_{i}}{L_{i}^{\prime}}$
$\cos \left(\alpha_{i}\right)=\frac{X_{i}}{L_{i}}$
Regarding to 7 and 8 , we conclude that:
$L_{i} \cdot \cos \left(\alpha_{i}\right)=L_{i}^{\prime} \cdot \cos \left(\gamma_{i}\right) \rightarrow \cos \left(\gamma_{i}\right)=\frac{L_{i} \cdot \cos \left(\alpha_{i}\right)}{L_{i}^{\prime}}$
$L_{i}=\frac{L_{i}^{\prime} \cdot \cos \left(\gamma_{i}\right)}{\cos \left(\alpha_{i}\right)}$
$L_{i}^{\prime}=\frac{L_{i} \cdot \cos \left(\alpha_{i}\right)}{\cos \left(\gamma_{i}\right)}$
Regarding to 6 and 11, we conclude that:
$\frac{L_{i} \cdot \sin \left(\alpha_{i}\right)}{\cos (\beta) \sin \left(\gamma_{i}\right)}=\frac{L_{i} \cdot \cos \left(\alpha_{i}\right)}{\cos \left(\gamma_{i}\right)}$
$\frac{\sin \left(\alpha_{i}\right)}{\cos \left(\alpha_{i}\right) \cos (\beta)}=\frac{L_{i} \cdot \cos \left(\alpha_{i}\right)}{\cos \left(\gamma_{i}\right)}$
$\tan \left(\gamma_{i}\right)=\frac{\tan \left(\alpha_{i}\right)}{\cos (\beta)} \rightarrow \tan ^{2}\left(\gamma_{i}\right)=\frac{\tan ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}$
$\sin ^{2}\left(\gamma_{i}\right)+\cos ^{2}\left(\gamma_{i}\right)=1 \rightarrow \cos \left(\gamma_{i}\right)=\sqrt{1-\sin ^{2}\left(\gamma_{i}\right)}$
$\sin ^{2}\left(\gamma_{i}\right)=\frac{\tan ^{2}\left(\gamma_{i}\right)}{1+\tan ^{2}\left(\gamma_{i}\right)}$
Regarding to 15 and 16 , we conclude that:
$\cos \left(\gamma_{i}\right)=\sqrt{1-\frac{\tan ^{2}\left(\gamma_{i}\right)}{1+\tan ^{2}\left(\gamma_{i}\right)}}=\sqrt{\frac{1+\tan ^{2}\left(\gamma_{i}\right)-\tan ^{2}\left(\gamma_{i}\right)}{1+\tan ^{2}\left(\gamma_{i}\right)}}$
$\cos \left(\gamma_{i}\right)=\frac{1}{\sqrt{1+\tan ^{2}\left(\gamma_{i}\right)}}$
Regarding to 14 and 18 , we conclude that:

$$
\begin{equation*}
\cos \left(\gamma_{i}\right)=\frac{1}{\sqrt{1+\frac{\tan ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}} \tag{19}
\end{equation*}
$$

Regarding to 11 and 19 , we conclude that:

$$
\begin{equation*}
L_{i}^{\prime}=\frac{L_{i} \cdot \cos \left(\alpha_{i}\right)}{\frac{1}{\sqrt{1+\frac{\tan ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}}} \tag{20}
\end{equation*}
$$

$L_{i}^{\prime}=L_{i} \cdot \cos \left(\alpha_{i}\right) \sqrt{1+\frac{\tan ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}$
$L_{i}^{\prime}=L_{i} \cdot \cos \left(\alpha_{i}\right) \sqrt{1+\frac{\tan ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}$
$L_{i}^{\prime}=L_{i} \sqrt{\cos ^{2}\left(\alpha_{i}\right)+\frac{\sin ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}$
From figure 3, we have:
Ellipse Circumference $=4 \times \lim _{n \rightarrow \infty} \sum_{i=1}^{n} L_{i}^{\prime}$

Regarding to 22 and 23 , we conclude that:
Ellipse Circumference $=4 \times \lim _{n \rightarrow \infty} \sum_{i=1}^{n} L_{i} \sqrt{\cos ^{2}\left(\alpha_{i}\right)+\frac{\sin ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}$
According to figure 5 , in $\triangle A D C$ we have:
$2 \alpha_{1}=180^{\circ}-\frac{180^{\circ}}{2 n}=180^{\circ}\left(1-\frac{1}{2 n}\right)=180^{\circ}\left(\frac{2 n-1}{2 n}\right)$
$\alpha_{1}=\frac{180^{\circ}(2 n-1)}{4 n}$

And in $\triangle A B C$ we have:
$180^{\circ}=90^{\circ}+\Omega_{i}+(n-i) \theta_{i}=90^{\circ}+\Omega_{i}+(n-i) \frac{180^{\circ}}{2 n}$
$\Omega_{i}=180^{\circ}-90^{\circ}-\frac{180^{\circ}(n-i+1)}{2 n}=90^{\circ}-\frac{180^{\circ}(n-i+1)}{2 n}$
$\Omega_{i}=\frac{n 180^{\circ}-180^{\circ}(n-i+1)}{2 n}=\frac{180^{\circ}(n-n+i-1)}{2 n}$
$\Omega_{i}=\frac{180^{\circ}(i-1)}{2 n}$
$\alpha_{i}=\alpha_{1}-\Omega_{i}$
Regarding to 26, 30 and 31 , we conclude that:
$\alpha_{i}=\frac{180^{\circ}(2 n-1)}{4 n}-\frac{180^{\circ}(i-1)}{2 n}=\frac{180^{\circ}(2 n-1)-360^{\circ}(i-1)}{4 n}$
$\alpha_{i}=\frac{180^{\circ}(2 n-1-2 i+2)}{4 n}=\frac{180^{\circ}(2 n-2 i+1)}{4 n}$
$\sin \left(\frac{180^{\circ}}{4 n}\right)=\frac{h}{b} \rightarrow h=b \cdot \sin \left(\frac{180^{\circ}}{4 n}\right)$
$L_{i}=2 h$
Regarding to 34 and 35 , we conclude that:
$L_{i}=2 b \cdot \sin \left(\frac{180^{\circ}}{4 n}\right)$
Regarding to 24 and 36 , we conclude that:

Ellipse Circumference $=4 \times \lim _{n \rightarrow \infty} 2 b \cdot \sin \left(\frac{180^{\circ}}{4 n}\right) \sum_{i=1}^{n} L_{i} \sqrt{\cos ^{2}\left(\alpha_{i}\right)+\frac{\sin ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}$
Regarding to 15 and 37 , we conclude that:
$S=\sum_{i=1}^{n} \sqrt{1-\sin ^{2}\left(\alpha_{i}\right)+\frac{\sin ^{2}\left(\alpha_{i}\right)}{\cos ^{2}(\beta)}}$
$S=\sum_{i=1}^{n} \sqrt{1-\frac{\sin ^{2}\left(\alpha_{i}\right)\left(\cos ^{2}(\beta)-1\right)}{\cos ^{2}(\beta)}}$
To simplify equations, suppose:
$\phi_{i}=\frac{\sin ^{2}\left(\alpha_{i}\right)\left(\cos ^{2}(\beta)-1\right)}{\cos ^{2}(\beta)}$
Regarding to 39 and 40 , we conclude that:
$S=\sum_{i=1}^{n} \sqrt{1-\emptyset_{i}}$
$S^{2}=\left(\sum_{i=1}^{n} \sqrt{1-\emptyset_{i}}\right)^{2}$
$S^{2}=\left(\sum_{i=1}^{n}\left(1-\emptyset_{i}\right)\right)+2\left(\left(\sqrt{1-\emptyset_{1}} \sqrt{1-\emptyset_{2}}\right)+\left(\sqrt{1-\emptyset_{1}} \sqrt{1-\emptyset_{3}}\right)+\cdots+\left(\sqrt{1-\emptyset_{n-1}} \sqrt{1-\emptyset_{n}}\right)\right)$
$P=2\left(\left(\sqrt{1-\emptyset_{1}} \sqrt{1-\emptyset_{2}}\right)+\left(\sqrt{1-\emptyset_{1}} \sqrt{1-\emptyset_{3}}\right)+\cdots+\left(\sqrt{1-\emptyset_{n-1}} \sqrt{1-\emptyset_{n}}\right)\right) \quad$ (44)

So:
$S^{2}=n-\sum_{i=1}^{n} \emptyset_{i}+P$
Regarding to 40 and 45 , we conclude that:
$S^{2}=n-\left(\sum_{i=1}^{n} \frac{\sin ^{2}\left(\alpha_{i}\right)\left(\cos ^{2}(\beta)-1\right)}{\cos ^{2}(\beta)}\right)+P$
$S^{2}=n-\left(\frac{\cos ^{2}(\beta)-1}{\cos ^{2}(\beta)} \sum_{i=1}^{n} \sin ^{2}\left(\alpha_{i}\right)\right)+P$
We have:
$\sum_{i=1}^{n}\left(\sin ^{2}\left(\alpha_{i}\right)+\cos ^{2}\left(\alpha_{i}\right)\right)=\sum_{i=1}^{n} \sin ^{2}\left(\alpha_{i}\right)+\sum_{i=1}^{n} \cos ^{2}\left(\alpha_{i}\right)=n$
So:
$\sum_{i=1}^{n} \sin ^{2}\left(\alpha_{i}\right)=\frac{n}{2}$
Regarding to 47 and 49 , we conclude that:
$S^{2}=n-\frac{n\left(\cos ^{2}(\beta)-1\right)}{2 \cos ^{2}(\beta)}+P$
$P=n(n-1) \times$ average $_{p}=\left(n^{2}-n\right) \times$ average $_{p}$
Regarding to 50 and 51 , we conclude that:
|www.worldwidejournals.com|
$S^{2}=n-\frac{n\left(\cos ^{2}(\beta)-1\right)}{2 \cos ^{2}(\beta)}+n^{2}$. average $_{p}-n$. average $_{p}$
$S^{2}=n^{2}\left(\frac{1}{n}-\frac{\cos ^{2}(\beta)-1}{2 n \cos ^{2}(\beta)}-\frac{\text { average }_{p}}{n}+\right.$ average $\left._{p}\right)$
$S=n \sqrt{\frac{1}{n}-\frac{\cos ^{2}(\beta)-1}{2 n c^{2}(\beta)}-\frac{\text { average }_{p}}{n}+\text { average }_{p}}$
Regarding to 37 and 54 , we conclude that:
Ellipse Circumference $=\lim _{n \rightarrow \infty}\left(2 b \cdot \sin \left(\frac{180^{\circ}}{4 n}\right) \times 4 n \sqrt{\left.\frac{1}{n}-\frac{\cos ^{2}(\beta)-1}{2 n \cos ^{2}(\beta)}-\frac{\text { average }_{p}}{n}+\text { average }_{p}\right)}\right.$
So:
Ellipse Circumference $=2 \pi b \sqrt{\text { average }_{p}}$

Calculation of average ${ }_{p}$

If $\sqrt{1-\emptyset_{k}} \sqrt{1-\emptyset_{k}}$ is the closest quantity to the avarage ${ }_{\rho}$, then:
average $_{p}=\sqrt{1-\emptyset_{k}} \sqrt{1-\emptyset_{k}}=1-\emptyset_{k}$, where $1 \leq k \leq n$
I have designed a java program to calculate $\sin ^{2}\left(\emptyset_{k}\right)_{i}$ and $\left(\frac{b}{a}\right)_{i}$ and plot them on a scatter diagram (Figure 7).

Figure 7: Scatter plot of $\sin ^{2}\left(\emptyset_{k}\right)_{i}$ and $\left(\frac{b}{a}\right)_{i}$
The algorithm of program has been displayed in figure 8.

Figure 8: Algorithm of java program
I have used regression analysis to obtain a linear equation between $\sin ^{2}\left(\varnothing_{k}\right)$ and $\frac{b}{a}$. Regression line associated with n points ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) is equal to: [6]
$y=m x+c \quad$ (58)
Where:
$m=\frac{n \sum(x y)-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}$
$c=\frac{\sum y-m \sum x}{n}$

Then:
$m=\frac{n\left(\sum_{i=1}^{10^{4}} \sin ^{2}\left(\emptyset_{k}\right)_{i}\left(\frac{b}{a}\right)_{i}\right)-\left(\sum_{i=1}^{10^{4}} \sin ^{2}\left(\emptyset_{k}\right)_{i}\right)\left(\sum_{i=1}^{10^{4}}\left(\frac{b}{a}\right)_{i}\right)}{n\left(\sum_{i=1}^{10^{4}}\left(\left(\frac{b}{a}\right)_{i}\right)^{2}\right)-\left(\sum_{i=1}^{10^{4}}\left(\frac{b}{a}\right)_{i}\right)^{2}}$
$c=\frac{\sum_{i=1}^{10^{4}} \sin ^{2}\left(\emptyset_{k}\right)_{i}-m \sum_{i=1}^{10^{4}}\left(\frac{b}{a}\right)_{i}}{10^{4}}$
So:
$\sin ^{2}\left(\emptyset_{k}\right)_{i}=m\left(\frac{b}{a}\right)_{i}+c$
Regarding to 1,40,57 and 63, we conclude that:
average $_{p}=1-\emptyset_{k}=1-\frac{\left(m \frac{b}{a}+c\right)\left(\frac{b^{2}}{a^{2}}-1\right)}{\frac{b^{2}}{a^{2}}}$
average $_{p}=1-\left(m \frac{b}{a}+c\right)\left(\frac{b^{2}}{a^{2}}-1\right)\left(\frac{a^{2}}{b^{2}}\right)$
$\operatorname{average}_{p}=1-\left(1-\frac{a^{2}}{b^{2}}\right)\left(m \frac{b}{a}+c\right)$

Formula of ellipse circumference

Finally, regarding to 56 and 66 , we conclude:
Ellipse Circumference $=2 \pi b \sqrt{1-\left(1-\frac{a^{2}}{b^{2}}\right)\left(m \frac{b}{a}+c\right)}$
and
$m=0.40521399808021946$ and $c=0.10071256100281531$
Where: $a=10000, b=10000$ and $n=2000$ (to obtain regression line).

REFERENCES

[1] Roger W. Barnard, Kent Pearce, Lawrence Schovanec, Inequalities for the Perimeter of an Ellipse, http://www.math.ttu.edu. Barnard.schov.pdf
[2] David Cohen, Lee B. Theodore, David Sklar, Precalculus: A ProblemsOriented Approach,Brookes/Cool, $6^{\text {th }}$ edition, 2010
[3] Sykora S., Approximations of Ellipse Perimeters and of the Complete Elliptic Integral $E(x)$, Vol I, 2005, http://www.ebyte.it /library/docs/math05a/ EllipsePerimeterApprox05.html
[4] Vagn Lundsgaard Hansen, Shadows of the circle:conic sections, optimal figures and non-Euclidean Geometry, world scientific, 1998
[5] Alan Sultan, Alice F. Artzt, The Mathematics that Every Secondary School Math Teacher Needs to Know, Routledge, $1^{\text {t }}$ edition, 2011
[6] Samprit Chatterjee, Ali S. Hadi, Regression analysis by example, Wiley Interscience, $4^{\text {th }}$ edition, 2006

