PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 11 | Issue - 01 | January - 2022 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

Cournal or the OI	RIGINAL RESEARCH PAPER	Chemistry
PARIPET IM	TERMINATION OF ASSAY IN FINISHED DDUCT OF CLOFARABINE INJECTION, G/ML IS AN IN-HOUSE PROCEDURE.	HPLC, Method Development, Validation, ICH guidelines
Ch.Venkata Kishore*	Department of Chemistry, AUEC (A), Visakhapat	nam.*Corresponding Author
William De a	Department of Chemistry, MVR College, Visal	chapatnam, Andhra Pradesh

V. Tejeswara Kau	530045,India.
K.Balaji	Department of Chemistry, MVR College, Visakhapatnam, Andhra Pradesh 530045,India.
Satya guru TVSPV	Vignan's Institute of Information Technology (A), Duvvada, Visakhapatnam- 530049.
N. Annapurna	Department of Chemistry, AUEC (A), Visakhapatnam.*Corresponding Author

A new and stability-indicating High performance liquid chromatographymethod was developed and validated for simultaneous determination of clofarabine impurities in Injectionformulation. The Chromatographic system consisted of a Shimadzu Class VP Binary pump LC-10ATvp, SIL-10ADvp Auto sampler, CTO-10Avp Column Temperature Oven, SPD-10Avp UV-Visible Detector. The method was validated as per the ICH guidelines Apart from these Chromatographic parameters likeresolution, capacity factor, separation factor, column efficiency and peakasymmetry should also be the ideal for estimation.

INTRODUCTION

Clofarabine is a next generation deoxyadenosine analogue which is used for the treatment of pediatricleukemia. The mechanism of its anti-cancer activity involves the combination of direct inhibition of DNA synthesis and ribonucleotidereductase and induction apoptosis. This drug is effective against various sub types of leukemia and solid tumors. The Chemical name of Clofarabineis (2R, 3R, 4S, 5R)-5-(6-amino-2-chloro-9H-purin-9yl)-4-fluoro-2- (hydroxy methyl) oxolan-3-ol and chemical formula is $C_{10}H_{11}$ ClFN₅O₃ and molecular weight is 303.68 g/mol.

For many years, the Southern Research Institute has had a programme, supported by the US National Cancer Institute, searching for new nucleoside anticancer drugs. In the early 1980s, two adenine-containing nucleosides, now known as fludarabine (Fludara; Berlex Oncology) and cladribine (Leustatin; Ortho Biotech) were in clinical trials. At the time, it was not clear whether either drug would gain approval by the FDA because some concerns were raised during preclinical and clinical development of these agents. Both drugs were susceptible to glycosidic bond cleavage with fludarabine subject to some phosphorylase cleavage and cladribine subject to both hydrolytic and enzymatic cleavage[1]. In the case of fludarabine, this cleavage resulted in the formation of 2-fluoroadenine, which is converted to the highly toxic 2fluoro-adenosine triphosphate[2].

Over several years, a number of experiments on mouse tumours, as well as human tumour xenografts, were examined, and it was determined that the 2-chloro, 2-fluoro and 2-bromo analogues all had some activity, but that the 2-chloro analogue had the best activity among the three compounds[3-5]. Clofarabine is a slightly lipophilic prodrug (mLog P = 0.5) that gains entry into cells by facilitative and active nucleoside transporter mechanisms and at higher concentrations and longer exposure times, by passive diffusion across lipid membranes[6].

As expected from its potent inhibition of DNA synthesis, clofarabine demonstrated strong in vitro growth inhibition and cytotoxic activity (IC50 values = $0.028-0.29 \mu$ M) in a wide variety of leukaemia and solid tumour cell lines[7]. The anticancer activity of clofarabine was dose- and schedule-

dependent, and greater antitumour activity was associated with more frequent administration[8].

Clofarabine administered intraperitoneally had significant activity against a wide variety of human tumourxenografts implanted subcutaneously in athymic nude or severe combined immune deficiency mice [9]. Moderate to excellent sensitivity to tumour growth delays were seen in all eight human colon tumours, three out of four human renal tumours, all four non-small-cell lung tumours, and all three prostatetumours. This spectrum of widespread anticancer activity has been confirmed by other investigators in human tumourxenograft models in mice [10]. The anticancer activity of clofarabine was dose- and schedule-dependent, and greater antitumour activity was associated with more frequent administration [11].Clofarabine is a second generation purine nucleoside analog with antineoplastic activity. Clofarabine is phosphorylated intracellularly to the cytotoxic active 5'-triphosphate metabolite, which inhibits the enzymatic activities of ribonucleotidereductase and DNA polymerase, resulting in inhibition of DNA repair and synthesis of DNA and RNA[12-14].

The aim of the method is to develop an analytical procedure for the determination of Clofarabine in Pharmaceutical Formulations.The analytical procedure for determination of Assay in finished product of Clofarabine Injection, lmg/mL is an In-House procedure.

The method shall be validated for the following parameters:

A) Accuracy

- B) Stability of Analyte in solution
- C) Filter compatibility.
- D) System Suitability of overall validation study.

Experimental:

Instrumentation, Chromatographic Conditions & Method:

The Chromatographic system consisted of a Shimadzu Class VP Binary pump LC-10ATvp, SIL-10ADvp Auto sampler, CTO-10Avp Column Temperature Oven, SPD-10Avp UV-Visible Detector. All the components of the system are controlled using SCL-10Avp System Controller. Data acquisition was done using LC Solutions software.

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 11 | Issue - 01 | January - 2022 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

The mobile phase consisted of 85:15 (v/v) of buffer solution and acetonitrileoperated on isocratic mode. The flow rate is 1.0 ml/min. Chromatographic Estimation of Clofarabinewas performed onInertsil ODS-2 (150 x 4.6) mm, 5µm column. The wavelength of detection is 263 nm. The injection volume is 25µL.

Chromatographic conditions

A High Performance liquid chromatography equipped with UV detector and an auto sampler or its

Column	:	Inertsil ODS-2
		(150 x 4.6) mm, 5µm
Detection wavelength	:	263 nm
Flow rate	:	1.0 mL/min
Injection volume	:	25µL
Runtime	:	10 min
Column temperature	:	40°C
Sample cooling rack	:	25°C

5.2.6. Calculation

	AT	WS	DT	Р	100
% Assay =	X	x		хх	
	AS	DS	v	100	LA

Where,

- AT : Average peak area of Clofarabine obtained from chromatogram of Sample preparation
- AS : Average peak area of Clofarabine obtained from chromatogram of Standard preparation
- WS :Weight of Clofarabine reference / working standard in mg
- DS :Dilution of standard preparation
- DT : Dilution of sample preparation
- P :Potency of Clofarabine reference / working standard on as is basis
- V :Volume of sample taken
- LA : Label amount of Clofarabine in mg/mL.

Accuracy

The accuracy of an analytical procedure expresses the closeness of agreement between the value that is accepted either as a conventional true value or an accepted reference value and the value found.

To demonstrate the accuracy of assay test method, drug substance is spiked quantitatively in to placebo from 50% to 150% of working concentration of test concentration at each level with triplicate preparation and analyzed using the test method. The result for Clofarabine is tabulated in the below table. Typical chromatogram of Accuracy at 100 % level for is exhibited below.

Results of Accuracy for Clofarabine

Accuracy Level	Sample #	% Recovery	Average % Recovery	% RSD
50 %	1	99.9	100.1	0.2
	2	100.2		
	3	100.1		
100 %	1	100.0	100.0	0.1
	2	100.0		
	3	99.9		
150 %	1	98.8	98.8	0.1
	2	98.9		
	3	98.8		
Overall %	Recovery			99.6
Overall %	RSD			0.61

Chromatogram of Accuracy at 100% Level

Acceptance Criteria:

Recovery at each level and overall average recovery of

assay results should be between 95.0% and 105.0%
The RSD at each level and overall RSD of % recovery should not be more than 3.0%

CONCLUSION:

The results are well within the acceptance criteria; hence the method is accurate for its intended use.

Stability of Analyte in Solution

Stability of analyte in solution is evaluated for the standard and sample solutions. The standard and sample solutions are prepared and analyzed as per the analytical procedure. A portion of these solutions were preserved at room temperature and analyzed at different time intervals from the time of preparations. The results are calculated from initial versus over a period of time. The results are summarized in the below Table A and Table B

Table A Stability of Standard Solution

Time Interval	Peak area	of Clofarabine	% Dif	ference
	RT	2-8°C	RT	2-8°C
Initial	43	366049		-
24 hours	4350072	4355612	0.37	0.24
48 hours	4349877	4347580	0.37	0.42

Table B. Stability of Sample Solution

Time Interval	Peak area of C	Peak area of Clofarabine			
	RT	RT	2-8°C		
Initial	44190	-			
24 hours	4408166	4402274	0.25	0.38	
48 hours	4405770	4416374	0.30	0.06	

Acceptance Criteria:

- % Difference of Clofarabinepeak area obtained from standard solution at each time point should not be more than 2.0 from the initial area.
- % Difference of Clofarabine peak area obtained from sample solution at each time point should not be more than 2.0 from the initial area.

CONCLUSION:

The data indicates that the, Standard solution is stable up to 48 hours and sample solution is stable up to 48 hours at room temperature and 2-8°C for Clofarabine peak.

5.3.9. System suitability of overall validation study

The System suitability is an integral part of analytical procedure. The tests are based on the concept that the equipment, analytical operations and samples to be analyzed constitute an integral system that can be evaluated as such. The system suitability results are tabulated in the below Table.

System Suitability of Overall Validation Study

Parameter	%	Tailing	Theoretical
	RSD	Factor	plates
System Suitability/ System Precision	0.02	1.1	4943
Specificity by diluent, placebo and known impurities	0.02	1.1	4943

www.worldwidejournals.com

70

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 11 | Issue - 01 | January - 2022 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripe>

Specificity by Forced	0.02	1.1	4983
degradation			
(Acid, Alkali, Thermal, Peroxide)			
Specificity by Forced	0.03	1.1	5047
degradation (Alkali)			
Specificity by Forced	0.02	1.1	4983
degradation (UV)			
Linearity	0.02	1.1	4943
Method Precision	0.02	1.1	4943
Intermediate Precision	0.04	1.1	6303
Accuracy (Recovery)	0.02	1.1	4943
Robustness-Flow rate:	0.05	1.1	6243
0.8mL/minute			
Robustness-Flow rate:	0.02	1.0	3940
1.2mL/minute			
Robustness-Column oven	0.03	1.1	4914
temperature: 38°C			
Robustness-Column oven	0.08	1.1	4875
temperature: 42°C			
Robustness-Low organic	0.02	1.1	5489
composition(142.5 mL)			
Robustness-High organic	0.04	1.1	4545
composition(157.5 mL)			
Stability of Analyte in Solution	0.02	1.1	4943
(Initial)			
Stability of Analyte in Solution	0.02	1.1	4943
(24 Hours)			
Stability of Analyte in Solution	0.02	1.1	5489
(48 Hours)			
Minimum	0.02	1.0	3940
Maximum	0.08	1.1	6243
Average	0.03	1.1	5078

Acceptance Criteria:

System suitability criteria should meet during overall validation studies, otherwise needs to be justified. Report minimum, maximum and average values of system suitability parameters.

The Tailing factor for Clofarabine should be NMT 2.0.

The relative standard deviation for Clofarabine peak from five replicate injections of standard solution should be NMT 2.0 %. The theoretical plates for Clofarabine peak in standard solution should be not less than 3000.

The Cumulative relative standard deviation for Clofarabine peak from five replicate injections of standard solution and bracketing standard should be not more than 2.0%.

CONCLUSION:

The results for system suitability are well within the acceptance criteria; hence the given chromatography system is acceptable for its intended use.

					1.0 / 0.					
mary of Validation Resul	ts			Validation	Accept	Acceptance Crite		Criteria		
Acceptance Criteria	Res	ults	7	Parameters						
				Accuracy	% Rec	overy at e	ach	Accura	cv Ave	
1.1 System precision	Compone	nt % RSI)		level a	nd overall	1%	Level	Re	
The RSD of results	name				recove	ry should	lbe	TO 0/		
obtained from six	Clofarabi	ne 0.02%	5		betwe	en 95.0% a	and	50 %		
standard NMT 2.0%					105.0% i	or Clofara	abine.	100 %		
1.2 Method Precision	Compone	nt % RSI	>		The %RSD at each level		The %PSD at each lorrel		150 %	
The relative standard	name						Overall	%		
deviation results	Clofarabi	ne 0.08%	5		%recov		dnot	Recove	rv	
obtained from six sample					be mo	ro than 3 (10%		1	
preparations should not					Denio		J / 0.	Overall	%	
be more than 2.0%								RSD		
Acceptance Criteria		Results								
····										
System suitability criteria defi	ined in test	Conditio	n			Clofaral	bine			
procedure should meet in eac	ch condition.					% RSD	Tailin	g factor	Theor	
1. The Tailing factor for C	Clofarabine	Flow rate	:0.8 1	nL/min		0.05	1.1		6243	
	Mary of Validation Result Acceptance Criteria 1.1 System precision The RSD of results obtained from six standard NMT 2.0% 1.2 Method Precision The relative standard deviation results obtained from six sample preparations should not be more than 2.0% Acceptance Criteria System suitability criteria defi procedure should meet in eat 1. The Tailing factor for 0	mary of Validation ResultsAcceptance CriteriaResultsI.1 System precision The RSD of results obtained from six standard NMT 2.0%Compone name1.2 Method Precision The relative standard deviation results obtained from six sample preparations should not be more than 2.0%Compone nameAcceptance CriteriaCompone nameSystem suitability criteria defined in test procedure should meet in each condition. 1. The Tailing factor for Clofarabine	Gradination Results Results Acceptance Criteria Component name % RSI 1.1 System precision name 0.02% The RSD of results Clofarabine 0.02% obtained from six Clofarabine % RSI standard NMT 2.0% Component % RSI 1.2 Method Precision Component % RSI The relative standard name % RSI obtained from six sample Clofarabine 0.08% preparations should not Clofarabine 0.08% be more than 2.0% Results Clofarabine Acceptance Criteria Results System suitability criteria defined in test Condition procedure should meet in each condition. Flow rate	Gradination Results Acceptance Criteria Results 1.1 System precision Component % RSD The RSD of results Clofarabine 0.02% obtained from six Clofarabine 0.02% 1.2 Method Precision Component % RSD The relative standard Component % RSD deviation results Olofarabine 0.08% obtained from six sample Clofarabine 0.08% preparations should not Clofarabine 0.08% Acceptance Criteria Results Condition System suitability criteria defined in test Condition Flow rate:0.8 metric.0.8 metric.	Walidation Results Acceptance Criteria Results Validation 1.1 System precision Component % RSD The RSD of results Clofarabine 0.02% obtained from six Clofarabine 0.02% standard NMT 2.0% Component % RSD 1.2 Method Precision Component % RSD The relative standard name 0.08% obtained from six sample Clofarabine 0.08% preparations should not Clofarabine 0.08% be more than 2.0% Clofarabine 0.08% Acceptance Criteria Results System suitability criteria defined in test procedure should meet in each condition Condition 1. The Tailing factor for Clofarabine Flow rate:0.8 mL/min	Waildation Results Validation Acceptance Acceptance Criteria Results Parameters 1.1 System precision Component % RSD The RSD of results Clofarabine 0.02% obtained from six Clofarabine 0.02% 1.2 Method Precision Component % RSD The relative standard Component % RSD deviation results Clofarabine 0.08% obtained from six sample Clofarabine 0.08% preparations should not Clofarabine 0.08% Acceptance Criteria Results System suitability criteria defined in test Condition procedure should meet in each condition Flow rate:0.8 mL/min	Validation Results Validation Acceptance Criteria I.1 System precision Component % RSD Acceptance Criteria Acceptance Criteria 1.1 System precision Component % RSD Accuracy % Recovery at elevel and overall recovery should between 95.0% 1.2 Method Precision Component % RSD 105.0% for Clofaradime 1.2 Method Precision Component % RSD 105.0% for Clofaradime 1.2 Method Precision Component % RSD 105.0% for Clofaradime 0.08% Clofarabine 0.08% 105.0% for Clofaradime 0.08% Clofarabine 0.08% 105.0% for Clofaradime be more than 2.0% Clofarabine 0.08% 105.0% for Clofaradime Acceptance Criteria Results System suitability criteria defined in test procedure should meet in each condition. Condition Clofaradime 1. The Tailing factor for Clofarabine Flow rate:0.8 mL/min 0.05	Interview of Validation Results Validation Results Acceptance Criteria Results I.1 System precision Component % RSD The RSD of results Component % RSD obtained from six Clofarabine 0.02% I.2 Method Precision Component % RSD The relative standard Component % RSD adeviation results Clofarabine 0.02% Obtained from six sample Clofarabine 0.08% preparations should not be more than 2.0% Clofarabine 0.08% Acceptance Criteria Results Condition System suitability criteria defined in test procedure should meet in each condition. Condition Clofarabine 1. The Tailing factor for Clofarabine Flow rate:0.8 mL/min 0.05 1.1	Interviewent of Validation Results Validation Results Acceptance Criteria Results I.1 System precision Component name % RSD name Accuracy % Recovery at each level between 95.0% and 105.0% for Clofarabine. Accuracy % Recover should be between 95.0% and 105.0% for Clofarabine. Image: Clofarabine 0.02% I.2 Method Precision Component name % RSD name % RSD name Image: Clofarabine 0.08% Clofarabine 0.08% Clofarabine 0.08% Clofarabine 0.08% The %RSD at each level and overall %RSD of % overall % RSD of % overall % RSD of % overall % RSD or %	

unum morldwide	iournala com	
www.worldwide	journais.com	

nuary - 2022	2	PRINT	ISSN No	. 2250	- 1991 DOI	: 10.36	106/r	paripe
Validation	A	ccepta	nce Crit	teria	Results			
Parameters								
	2. fra	l No m m dilu	terference ent plac	ce cho	There is no	o interi	eren	ce is
	ar	id knov	vn impur	rities	time of Clo	farabi	ne p	eak
	No	o Interf	erence		in the chro	matog	ram	
	sh +h	ould b	e observ	red at	obtained th	rom the	e dilı	ient,
	C	lofarab	ine peak	in	impurities.		MIL	
	cł	iromato	ograms		T			
	oł	otained	from the) ,				
	dı th	luent, p e impu	lacebo a rities	and				
	2.	2 Force	d		Drug Prod	uct (FP)	
	de	egrada	tion stud	у	As Such (U	nstres	, sed)	0.0
	a.	Calo	culate the	∋%	Acid degra	adatior	ı ,	-1.2
	ae	egradai	lion agai prenara	nst as tion	Alkali deg	radatic	n	8.0
	fo	reach	condition	n in	Peroxide d	egrad	ation	-1.5
	ar	iy one o	of conditi	ion	UV degrau	lation ograda	tion	-0.5
	de	egrada	ition sho	ould	1110111101	cyrua		-0.0
	b	etweer	1 5.0% to	o				
	20).0%.						
	b.	Fore	each	1.				
	a. Di	egrada Fritv an	non sanı I'dle shou	pie, ild				
	le	ss than	the purif	ty				
	th	reshold	l for					
		loiarau	ine peak					
Validation Parametei	rs	Accep Crite	otance ria	ľ	Results			
inearity		a. C	orrelatio	on	Clofarabin	le		
coel		coeffic	cient should less than		Correlation 1.000			0
		0.999	less uic	±.	coefficient			
		b. R	eport th	e	slope of	lino	7236	6.0
		slope	of	~ -	Y-intercept	of	2626	32.5
		ic. R	eport th	e eY-	regression	line		
		interco	ept of		Y-intercept	bias	0.6	
		regres	sion line	e	at 100% iev	7el		
		a. 1-	interce _l level sh	ould				
		be be	tween ±	ound				
		5.0%						
Validation		Accer	otance C	riteri	a		Re	sults
Parameters	5		1 = 4 in	- 0/ D	CD of moth	.1		100/
ntermedia Precision	.te	nrecis	imulativ	inter:	SD 01 meur mediate pre	oa ecisior	0.4	1 2%₀
		result	s obtain	ed fro	om twelve s	ample		
		prepa	rations s	should	d not be mo	ore tha	n	
Validation	Z	2.0%.	Cri	toria	T 1	• lte		
arameters	5	Iccehre	ince on	teria		lesuna		
Accuracy	┢	% Rec	overy at e	each	Accuracy	Avera	are %	%
-		level a	nd overal	11%	Level	Recov	very	RSD
		recove	ry shouic n 95.0%	l be and	50 %	100	.1	0.2
	1	05.0% f	or Clofar	abine.	100 %	100	.0	0.1
	_T	<u> </u>	lace to T		150 %	98.	8	0.1
	1	and ov	erall %RS	SD of	Overall %	99.	6	
	9	%recov	ery shoul	d not	Recovery			
		De Ino.	re than 3.	U%0.	Overall % RSD	0.6	3	
					2192			
			Clofara	bine				
			% RSD	Tailir	ng factor Th	eoreti	cal p	lates

	JAN JOURIN	mori		Ine -	II Issue	- 01	Je	anuar y - 2022	- FRIM		. 4	230 - 1331		. 10.00.	too/paripe
	should	be NM	Т 2.0	2.0		e:1.2	m	ıL/min	0.02	1.	0	394	40		
	2. The rela	Flow rate:1.2 mL/min					0.02	1.0		394	3940				
	for Clof	Column oven temperature: 38°C					0.03	1.	1	49	4914				
	replicate injections of standard					Column oven temperature: 40°C					1.	1	48	4875	
	solution should be NMT 2.0 %. Low					ow organic composition					1.	1	548	5489	
	3. The The	5. The Theoretical plates for Clofarabing pools in standard in					(142.5 mL)								
	Clotara	d ania	eak in standard in		High organic			omposition	0.04 1		1	4545			
	less than 3000.					(157.5 mL)									
Validation	Accenta					% Diff	erence o) f	% Di	fferei	nce of	area			
Parameters	Criter	ia	ACS.				Clofz		abine peal		Tim		Sam		
Stability of	% Difference of		% Difference o		farea			area		btained		Interv	val	l Solution	
analyte in	Clofarabine peak		, Dimercinee er						from sample				RT		2-8°c
solution	area obtained		Time	andard							Initia	al	0.0	0.0	
	from standard		Interval S		olution							24 hr	s.	0.25	0.38
	solution at	each	mervar		Julion							48 hr	s.	0.30	0.06
	time point should			RT	' 2-8°	:						Standard	solution is s		stable up
	not be more than		Initial	0.0	0.0							to 48I	Iours	ours and sample	
	initial area		24 hra	0.2	7 0.24	-						soluti	on is :	stable	up to
	millai area.		24 IUS.	0.5	1 0.24	_						48Hours	at roo	m tem	perature
			48 hrs.	rs. 0.3								and 2-8	3°C fo:	r Clofa	Irabine
Validation	Parameter	s Acce	ptance Criteri	Results											
System suitability S			System suitability criteria shou					System suit	riteria	Minimum		Maximum		Average	
		durir	during overall validation studies,				(% RSD		0.02		0.08		0.03	
		other	otherwise needs to be justified			eport	t I	Tailing fac	tor		1.0		1.1		1.1
m		minii	inimum, maximum and av												
valu			es of system sur	ity			Theoretica		3940		6243		5078		
			he Tailing facto	Clofarabine											
		ould be NMT 2	oioiaiab	inc											
	he relative stand	relative standard deviation f													
Clofarabine peak from															
		re	replicate injections of standard												
		so	solution should be NMT 2.0 $\%$.												
		• T	 The Theoretical plates for 												
		C	Clofarabine peak in standard in												
		st	andard solutior	ı shoı	uld be no	t less	s								
		than 3000.													

CONCLUSION

The analytical procedure for Assay is validated and found suitable for its intended use and it meets the acceptance criteria for:

Specificity:

No Interference should be observed at the retention time of peak in the chromatograms obtained from the diluent and the placebo solution.

Forced Degradation:

The method is specific and stability indicating for its intended use.

Linearity:

The analytical procedure is linear within the concentration range from 50 % to 150 % (30.24µg/mL to 90.72µg/mL) for Clofarabine peak.

Intermediate Precision:

The method is precise and rugged with respect to analyst to analyst, day to day, column to column and equipment to equipment for its intended use.

Accuracy:

The analytical test procedure is accurate for its intended use.

Robustness:

The test method is robust enough as demonstrated by altering the Flow rate, Column oven temperature and Organic composition.

Stability of analyte in solution:

The Standard solution is stable up to 48 hours and sample solution is stable up to 48 hours at room temperature and 2- 8° C for Clofarabine peak.

The data for each validation characteristic described in this report meets the acceptance criteria with respect to Specificity, Forced degradation, Stability of analyte in solution, Linearity, Precision, Intermediate Precision, Accuracy and Robustness.

The validation results reveal that the analytical procedure is suitable for determination of Assay in ClofarabineInjection, lmg/mL. The method is stability indicating for determination of Assay of Clofarabine in ClofarabineInjection, lmg/mL.

REFERENCES

- Lindemalm, S., Liliemark, J., Juliusson, J., Larsson, R. & Albertioni, F. Cytotoxicity and pharmacokinetics of cladribine metabolite, 2chloroadenine, in patients with leukemia. Cancer Lett. 210, 171–177 (2004).
- Avramis, V. I. & Plunkett, W. 2-Fluoro-ATP: a toxic metabolite of 9-β-Darabinoxyl-2-fluroadenine.Biochem. Biophys. Res. Commun. 113, 35-43 (1983).
- Montgomery, J. A. & Secrist, J. A. III. 2-Fluoro-9-(2-fluoro-β-Darabinofuranosyl) adenine nucleosides. US Patent 5,034,581 (1991).
- Montgomery, J. A. & Secrist, J. A. III. 2-Fluoro-2-haloarabinoadenosines and their pharmaceutical compositions. US Patent 5,384,310 (1995).
- 5. Montgomery, J.A. & Secrist, J.A. III. US Patent 5,661,136 (1997).
- King, K. M. et al. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems.Mol.Pharmacol.69, 346–353 (2006).
- Waud, W. R., Schmid, S. M., Montgomery, J. A. & Secrist, J. A., III. Preclinical antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-β-Darabinofuranosyl) adenine (CI-F-ara-A). Nucleosides Nucleotides Nucleic Acids 19, 447–460 (2000).
- Stephenson, K. et al. Correlation between frequency of administration and efficacy of clofarabine in the H460 human non-small cell lung tumor xenograft model. Proc. Am. Assoc. Cancer Res. 44, A814 (2003).
- 9. Waud, W. R., Schmid, S. M., Montgomery, J. A. &Secrist, J. A., III. Preclinical

72

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 11 | Issue - 01 | January - 2022 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-β-Darabinofuranosyl) adenine (Cl-F-ara-A). Nucleosides Nucleotides Nucleic Acids 19, 447-460 (2000).

- Takahashi, T., Kanazawa, J., Akinaga, S., Tamaoki, T. & Okabe, M. Antitumor 10. activity of 2-chloro-9-(2-deoxy2-fluoro- β -D-arabinofuranosyl) adenine, a novel deoxyadenosineanalog, against human colon tumorxenografts by oral administration. Cancer Chemother. Pharmacol. 43, 233–240 (1999).
 11. Stephenson, K. et al. Correlation between frequency of administration and
- efficacy of clofarabine in the H460 human non-small cell lung tumorxenograft model. Proc. Am. Assoc. Cancer Res. 44, A814 (2003).
 DeGennero LJ, Raetz E (2014) Acute Lymphoblastic Leukemia.
 VenkataNR, Jalandhar D, Gnanadey G, Bandari R, Manoi P Development of
- supercritical Fluid (Carbon dioxide) based ultra-performance convergence chromatographic stability indicating assay method for determination of clofarabine in injection. Analytical methods 5:7008-7013, (2013).
 14. Takahia Y, Yamauchi T, Rie N, Takanori U, Determination of Clofarabine
- triphosphate concentration in leukemia cell using sensitive, isocratic High Performance Liquid Chromatography.Anticancer research 31: 2863-2867, (2011).