
PARIPEX - INDIAN JOURNAL F RESEARCH | O May - 202Volume - 11 | Issue - 05 | 2 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

A
B

ST
R

A
C

T

In this paper I have studied about modern software engineering concept and their strategy which is basically used for
software development and constructs a model which measure the software quality of the development process. In
Continuous improvement is a key factor for survival in today's turbulent business environment. This counts for civil
engineering and even more so in the fast-paced world of information technology and software engineering. The agile
methodologies, like scrum, have a dedicated step in the process which targets the improvement of the development
process and software products. Crucial for process improvement is to gain information which enables you to assess the
state of the process and its products. From the status information you can plan actions for improvement and also assess
the success of those actions.

ORIGINAL RESEARCH PAPER Computer Science

AGILE TECHNOLOGY IN SOFTWARE
DEVELOPMENT AND QUALITY ASSURANCE KEY WORDS: Agile, Scrum

Sat Kumar Extension Lecturer of Computer Science Government College, Hansi (Hisar)
Haryana, India

1. INTRODUCTION
Software engineering is defined as the basic the discipline of
developing and software systems that behave reliably and
efficiently, are affordable to develop and maintain, and satisfy
all the requirements that customers have defined for them.
Today, software engineering is faced with rapid change in
user requirements, technology. To cope with the rapid change
in the business environment, the software development
process must be assessed and adapted frequently. According
to Fowler, the traditional methodologies or engineering
methodologies, like the waterfall methodology, are not suit-
able for environments with rapid change, Engineering
methods tend to try to plan out a large part of the software
process in great detail for a long span of time, this works well
until things change. So their nature is to resist change.

In Agile methodologies evolved to promote continuous
improvement. Scrum belongs to the agile methodologies and
defines frequent feedback loops for improvement. Although
continuous improvement is a pivotal element of Scrum and
other agile methodologies we are faced with the problem to
identi fy potential for improvement. The Software
development and metrics can be used to develop agile
application technology. A variety of software metrics exist
that provide information about resources, processes and
products involved in software development. Software metrics
provide factual and quantitative information.

2. METHODOLOGY
In this paper the methodology used for measure the agile
development process and their parameters are theoretical
basis for the definition of a measurement model. For this
purpose, we study the literature of such papers and thesis
databases. During the literature study we will also investigate
how to choose and combine the metrics appropriately. The
implications from agile development research questions help
to ensure that measurement models deliver significant data
and that the data can effectively be used by the stakeholders
involved in the software measurement.

In this regarding the measurement goals in an agile software
development process we will partly explore by means of the
literature. The exploration tries to find out what industry
experts de ne as the main goals in an agile software
development process and their parameters which is used in
research. This paper will investigate what are the specific
needs in practice. The analysis of the business context will be
used to find out the answers of agile manufacturing. We will
analyze how exactly the development process is executed.

3. AGILE METHODOLOGIES
In Traditional and moder n software development
methodologies were deduced from engineering disciplines
such as civil or mechanical engineering. But the adopted

concepts are not suitable for every software engineering
project, because of the lack of edibility.

The agile engineering disciplines have a clear separation
between design and construction. The separation can be
made in construction because design is mainly an intellectual
activity whereas the construction is foremost a physical
activity. A comparable segregation is not possible in software
engineering because a continuum exists between design and
construction where both are thoroughly intellectual activities.
In software engineering and civil both phases are executed
sequentially which means that once the design phase is
finished it is not reentered. Projects which are strictly
executed according to such a sequential process are
predictable. The traditional software development
methodologies try to plan out a large part of the software
process in great detail for a long span of time. The
requirements are collected in the beginning of a project and
then these requirement pass in one big bulk through all the
steps in the development process but the same level of
predictability.

The traditional software development methodology is the
waterfall model. In this model UML diagrams are sometimes
created as design documents. Although you can use peer
review to check the design, errors in the design are often
times only uncovered during coding and testing.
Furthermore, requirements often change even late in a
project. These circumstances show that a high risk exists of
the design becoming obsolete. Once the design must re-
engineered a lot of the invested time becomes wasted e ort.
The high risk of wasted e ort constitutes one reason why a
detailed planning is very inefficient.

4. AGILE PARADIGM AND LIFE CYCLE
In the agile paradigm, I have studied about this methodology
and their development process but there is another reason for
the inefficiency of a detailed planning. Jim Highsmith states
that Projects may have a relatively clear mission, but the
specific requirements can be volatile and evolving as
customers and development teams alike explore the
unknown. This fact adds to the risk of producing waste. Either
time is wasted planning requirements or time is wasted on
implementing requirements which the customer no longer
needs. From the desire to cope with the unpredictability the
agile software development methodologies emerged.

Agile methods and technology are adaptive rather than
predictive as well as modern technology to develop software
as quality. Agile methods are not only able to adapt to changes
in the customer requirements but are also able to react to
changes in the environment by adapting the software
development process. Through these properties they are
very effective in changing environments.

www.worldwidejournals.com 177

PARIPEX - INDIAN JOURNAL F RESEARCH | O May - 202Volume - 11 | Issue - 05 | 2 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

Figure-1: The Agile Scrum Process

5. AGILE PRINCIPLES
Agile practitioners keep in mind different ways or basic set of
rules during any of agile methodology. According to
following are the principles of agile development:

Ÿ Satisfy the customer through the early and quick delivery.
Ÿ Welcome change in requirements even in the late in the

project.
Ÿ Keep delivery cycle short (weeks).
Ÿ Business and development people should work together.
Ÿ Build project around some motivated people.
Ÿ Place emphasis on face to face communication.
Ÿ Working software is primary measure of progress.
Ÿ Promote substantial development pace.
Ÿ Continuous attention to the good design and technical

excellence

6. SOFTWARE DEVELOPMENT METHODOLOGIES IN
AGILE
The different methodologies of agile development are given
below:

Ÿ Scrum
Ÿ Extreme programming (Xp)
Ÿ Feature Driven Development (FDD)
Ÿ Crystal Clear Methodology (CC)
Ÿ Dynamic Systems Development Method (DSDM)
Ÿ Adaptive Software Development

7. THE SCRUM
Scrum is an agile software development framework which
also has the four principles of the agile manifesto at its core. In
a scrum environment a team develops software in sprints. The
length of a sprint is consistent but different teams may use
different sprint lengths. Usually sprint lengths of 2 to 4 weeks
are used.

A sprint is an iteration which consists of several steps as
illustrated in Figure 2.1. At the beginning of each sprint stands
the sprint planning. In the sprint planning meeting the
development team meets with the product owner who is
responsible for the business value of a project. Together with
the product owner the development team chooses a set of
work items from the product backlog to implement during the
sprint. The product backlog contains all the work items for a
speci c software product ordered by their priority.

8. PROBLEMS IN TRACKING SYSTEMS
An Issue Tracking System (ITS) is a software tool which is used
in the change management of software engineering projects.
Issue tracking capabilities enable a project team to record
and track the status of all outstanding issues. In the context of
this master thesis an issue is either of the type enhancement,
bug or task. In addition to issue recording and status tracking
of issues, ITSs are used for project planning.

A user story describes a software enhancement from the user
perspective. Usually, it contains the user requirements and the
acceptance criteria which are used to evaluate whether an
enhancement has been implemented according to the
requirements. An issue of type bug is created if a deviation

9. CHALLENGES IN SOFTWARE TESTING PROCESS IN
AGILE
Agile manifesto is the set of rules or principles for agile
software development. These principles consist of the ideas
that are basic guidelines and are common for all agile
development methods. If we take a look at the software testing
process in Agile methods.

First of all, the ultimate priority of agile development is to
deliver a working piece of software to customers early and
continuously with a rapid releasing cycle. For testing process
it is a challenge because, if the release cycles are rapid then it
will put fixed deadlines for testing activities and that does not
allow maximizing the testing time if more defects are found
than estimated. They cannot send them back to fix, because
the testing time is pre planed and they need to deliver a
product on a set date.

Secondly, Agile demands that changing requirements should
be welcomed even in later stages of the development. Testing
activities are traditionally been based on specifications that
are completed in a phase of development and then they can
be used as a basis for test design and other quality assurance
activities. And if they will change the requirements and which
will eventually change these documents then it will challenge
the traditional way of doing testing.

10. CONCLUSIONS & FUTURE SCOPES
In this paper I, have to identify a structured approach which
can be used to establish a software measurement program.
The GQM approach proved to be suitable to design a software
measurement program in this study. The pivotal factor is that
the GQM approach follows a top-down fashion for the
definition of a measurement model. The construction of a
measurement model starts with the identification of the
business goals. The business goals are then linked to
measurement goals. From the measurement goals we derive
questions which need to be answered to assess the
development performance against the measurement goals.

REFERENCES:
1. Ahsan Nawaz and Kashif Masood Malik, Software testing in Agile

Development, A Thesis in Computer Science, MCA-2008-25 (2008)
2. Falk Martin Software Quality Assessment in an Agile Environment, MCS

(2012)
3. ACM. Computing degrees & careers. http://computingcareers.acm.

org/?page_id=12, 2006. Retrieved: 16 March 2013.
4. Agile Alliance. Guide to agile practices. http://guide. agilealliance.org/.
5. Scrum Alliance. Scrum's three roles. http://www.scrumalliance.org/

pages/scrum_roles. Retrieved: 11 October 2012.
6. T L Alves, C Ypma, and J Visser. Deriving metric thresholds from benchmark

data, 2010.
7. D. J. Anderson. Agile management for software engineering: applying the

theory of constraints for business results. Prentice Hall, 2004.

178 www.worldwidejournals.com

