| journal or A                                                                                                          | ORIGINAL RESEARCH PAPER                                                                                 | Physics                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| ARIPET S                                                                                                              | STUDY OF HIGH-SPEED SOLAR WIND STREAMS<br>EVENTS & SOLAR PROTON DENSITY DURING<br>SOLAR CYCLES 22 & 23. | <b>KEY WORDS:</b> Solar wind<br>streams (V), Cosmic ray intensity<br>(CRI), Solar Proton density (D). |
| S.G. Singh                                                                                                            | Department of physics Govt. P.G. College Panna                                                          | (M.P.).                                                                                               |
| N.K. Patel                                                                                                            | Department of physics Govt. P.G. College Panna (M.P.).                                                  |                                                                                                       |
| P.R. Singh                                                                                                            | Department of physics Govt. P.G. College Panna (M.P.).                                                  |                                                                                                       |
| S.C Chaturved                                                                                                         | <b>C Chaturvedi</b> Department of physics Govt. Lahiri College Chirimiri, Koriya (C.G.)                 |                                                                                                       |
| A geomagnetic storms is a global disturbance in Earth's magnetic field usually occurred due to abnormal conditions in |                                                                                                         |                                                                                                       |

A geomagnetic storms is a global disturbance in Earth's magnetic field usually occurred due to abnormal conditions in the interplanetary magnetic field (IMF) & solar wind plasma emissions caused by various solar phenomenon. 138 solar wind streams in solar cycle 22 & 173 solar wind streams in solar cycle 23, have been found, which are associated with proton density, observed during 1986 to 2010. We have analyzed & studied them statistically. We have found that yearly occurrences of geomagnetic streams are strongly correlated with proton density in 11-years sunspot cycle, but no significant correlation between the maximum & minimum phase of solar cycle 22 & 23 have observed.

## **INTRODUCTION:-**

It has been known since long time that the sun & its outputs are the common source of origin of several sporadic cosmic ray intensity variations such as solar wind streams & plasma density. Solar wind streams are of importance to the solar physics as well as cosmic ray modulation studies as they release vast amount of matter & radiation in short-time (**Cone** & **Richardson**, 1995; **Shrivastava** & **Jaiswal**, 2003). Distribution of solar wind streams around the sun & their association with various geomagnetic & cosmic ray intensity has been studied by several workers from time to time (**Hotton**, 1980; **Grade** et al 1983; **Shrivastava** 2003). Solar output in terms of solar plasma & interplanetary magnetic field ejected out into interplanetary medium consequently create the perturbation in the interplanetary magnetic field (**Singh** et al 2012).

The first tentative direct observation of the solar wind was reported by **Biber**, **Pomerantz & Taso** (1983) form the Russian space probe Lunik-2. The data have been examined for the long- term variation. Wang & **Sheelay**, 1988; **Bolton** 1990; **Gazis** 1996 showed that when long-term averages are considered the correlation between geomagnetic activity & solar wind velocity is indeed very striking. He found significant variation from one cycle to next.

### Method of Analysis:-

In this analysis we have used the stream time annual values of solar wind speed & plasma density for the period of 1986 to 2010. The basis data are the mean daily values, which are taken from the OMNI website. Then we used a statistical technique to correlate them.

#### **RESULT & DISCUSSION:-**

The sun & its outputs in form of various interplanetary features such as plasma density, solar wind streams & interplanetary magnetic field are related to the disturbances in earth magnetic field. Earlier a number of investigators have studied & reported significant relationship among interplanetary plasma parameters for the period of solar cycles 22 & 23 (Mishra et al 2000, Singh & Shrivastava, 2002). In the present analysis we have taken the period 1986 to 2010, which cover solar cycle 22 & 23. Fig 1.1 & fig 1.3 show the line cross-plot between solar wind stream & plasma density for corresponding solar cycle 22 & 23. Fig 1.2 & fig 1.4 show the cross-correlation between solar wind stream & plasma density for the period of 1986 to 1996 & 1997 to 2010, which cover solar cycle 22 & 23. These figures show positive correlation between SWS & plasma density. It is revealed that correlation coefficient for solar cycle 22 is 0.0268 but for solar cycle 23 is 0.1845, which is higher than previous solar cycle 22.

















www.worldwidejournals.com

# PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 11 | Issue - 11 | November - 2022 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

#### **REFERENCES:-**

- 1. Biber, Pomerantz & Taso, C.M. (1983) Proc. 18th ICRC Bangalore, 8, 289. 2.
- Bolton, S.J. (1990); J. Geophys, Lett 17, 3740. 3. Cane, H.V. & Richardson, I.G. (1995), cosmic ray decrease 1964-1994, J. Geophys Res. 101, 2156-2157.
- 4.
- Gazis, P.R. (1996); J. Geophys Res. 110-415. Grade, S.K. Jain A.K. Pandey P.K. & Shrivastava, P.K. (1983). "Study of large 5. solar flares & their helio-longitudinal effects on geomagnetic storm during 1975-1979". 18<sup>th</sup> Int. Cos. Ray. Conf. **3**, 278-281.
- 6. Hotton, C.J. (1980). "Solar flares & the cosmic ray intensity". Solar physics, 66, 159-165.
- Mishra, V.K., Tiwari, D.P. & Shrivastava P.K. (2000), Asian journal of 7. physics9,97.
- 8 Singh, G.N. & Shrivastava P.K. (2002) Earth, Moon & Planet 91, 1.
- Shrivastava, P.K. & Jaiswal, K.L. (2003) "High speed wind streams & cosmic ray intensity variation". Solar physics, **214**, 195-200. Shrivastava, P.K. (2003) "Effect of halo coronal mass ejection cosmic ray 9. 10.
- intensity during ascending phase of solar cycle 23". Proc 28th Int. Cosmic Ray Conf.SH2.2,3635-3638. 11.
- Singh S.G, Saxena A.K and Singh R.P (2012) "Correlative Study of Geomagnetic Strom's with sun spot number in solar cycle 23" Indian Journal of Scientific Research Vol.1 (11), 131-134.
- 12. Singh S.G, Saxena A.K, Dwivedi N (2012) "Study of Long Term Variation of Cosmic ray Intensity with Interplanetary Magnetic Field" European Scientific Journal Vol. 8 (27), 101-104. Wang & Sheelay (1988); J. Geophys. Res. **93**, 112-127.
- 13.