Orthodontic Treatment in Patient With Ectodermal Dysplasia and Cleft Lip and Palate.

Noemi Leiva
Orthodontist, Director Craniofacial Malformation Unit UMC, Faculty of Dentistry, University of Chile. Luis CalvoMackenna Hospital.

Daniella Vergara
Dental Surgery, Craniofacial Malformations Unit UMC, Faculty of Dentistry, University of Chile.

Paulina Sciaraffia
Dental Surgery, Craniofacial Malformations Unit UMC, Faculty of Dentistry, University of Chile.

Loreto Castellón
Maxillofacial surgeon. Luis CalvoMackenna Hospital.

ABSTRACT
Ectodermal dysplasia (ED) forms a large group of syndromes characterized by anomalies of ectodermal structures. It is a rare inherited disorder, with a characteristic physiognomy, affecting the development or function of the teeth, hair, nails and sweat glands, which can range from mild to severe. There are described more than 200 types of ED, the most common form is the Hypohidrotic type and usually is inherited as a recessive X-linked trait. A case of a patient with hypohidrotic ED and Cleft lip and palate is presented, the treatment included orthodontic and midface distraction osteogenesis using RED system (Rigid external distraction).

INTRODUCTION
The term Ectodermal dysplasia (ED) is used to describe a heterogeneous group of disorders characterized by findings that imply a primary defect of skin, teeth and appendage structures including hair, nails, sebaceous glands and exocrine disorders. ED is a hereditary disorder happens as a result of disturbances in patterning the developing embryonic ectoderm. When commit at least 2 of these ectodermal structures, the patient is diagnosed with ectodermal dysplasia syndrome.

Currently, ED represents a large and complex group of diseases comprising more than 200 different medical conditions. In an attempt to classify different subgroups according to the presence or absence of the ED 4 primary defects are created:
- ED1: Trichodysplasia (hair dysplasia).
- ED2: Dental dysplasia.
- ED3: Onychodysplasia (nails dysplasia).
- ED4: Dyshidrosis (sweat glands dysplasia).

In patients with ED the pubic and underarm hair is generally low, the hair on the scalp is often blond, thin, hard and short, while eyebrows and eyelashes are often absent or are white. The nails may be normal or spoon-shaped. In females, the mammary glands are hypoplastic or aplastic. It has been reported impaired function of the lacrimal gland and occasionally glaucoma. There may also be more susceptible to allergic disorders such as asthma or eczema. The absence of sweat glands results in a very smooth skin, but dry and thin and with hyperkeratosis in hands and feet. While oral manifestations may include anodontia, hypodontia, conical teeth and underdevelopment of the alveolar bone.

Thus, the more committed structures are nails, hair follicles, sweat glands and teeth, but can be associated manifestations such as psychomotor retardation, immunodeficiency, cleft lip and palatal and cranial abnormalities.

Diagnosis is based on episodes of hyperpyrexia, lack or type of hair, absent teeth and tooth morphology. It has developed diagnostic criteria based on the number and distribution of sweat pores and the amount of sweat produced. Other diagnostic criteria are dermatoglyphic analysis, characteristics of tear secretion and distribution and pattern of scalp hair. The missing teeth is also an important sign.

This disease can be inherited by various genetic patterns including: autosomal dominant, autosomal recessive and X-linked (dominant or recessive). Also is possible a spontaneous genetic mutation (de novo) that can occur in any family with no history of this syndrome.

The prevalence in the population has been evaluated between 1:10,000 and 1:100,000 men live births, with a mortality rate of 28% in men aged up to 3 years old.

Of the 200 different ED entities, has been identified the causative gene in approximately 30. Most cases of ED are caused by mutations in only 4 genes:
- EDA1: Reported in patients with X-linked form, encoding the A1 ectodysplasin isoform protein, which belongs to the family of tumor necrosis factor (TNF).
- WWTP: Reported in patients with autosomal dominant and in some cases with autosomal recessive inheritance, encoding the receptor ectodysplasin-A1.
- EDARADD: Causing both autosomal forms, dominant or recessive, which acts as intracytoplasmic EDAR receptor modulator.
- WNT10A: Member of the Wnt signaling pathway, involved in embryonic development and cell differentiation as well as certain physiological processes in adult and cancer, and give rise to several forms of autosomal inheritance, as hypohidrotic ectodermal dysplasia or dental-nail-dermal dysplasia.
Therefore, the signaling pathway mediated by the EDA is essential for proper development of various organs and structures derived from the ectoderm, such as hair, nails, pituitary gland, mammary and sweat glands, nose, eyes and tooth enamel.

There are two main types of this condition depending on the number and function of the sweat glands:
1) Hidrotic ED (Clouston syndrome): where the sweat glands are normal and is inherited in an autosomal dominant manner.
2) Hypohidrotic or Anhidrotic ED (Christ-Siemens-Touraine syndrome), where the sweat glands are absent or significantly reduced number, presents X-linked inheritance. Depending on the severity of the clinical manifestations, the ED can be classified as Hypohidrotic (decrease of sweat glands) or Anhidrotic (lack of sweat glands)\(^1,15\).

Hypohidrotic Ectodermal Dysplasia (HED)
Is the most common form of ED, it affects men more severely, whereas heterozygous females show varying severity, ranging from mild to severe, due to inactivation of the X chromosome\(^16\).

The HED has characteristic triad of reduction in the amount of hair (hypotrichosis), absence of sebaceous glands (asteatosis), and absence of sweat glands (anhidrosis)\(^1,15\).

Other classic signs are periorbital wrinkles, frontal bossing, prominent supraorbital ridges, saddle nose (depressed nasal bridge), prominent chin, protruding lips, sunken cheeks and wrinkled, hyperpigmented skin around the eyes and hyperkeratosis of palms and soles of the feet. Further, such as chronic rhinitis, pharyngitis, laryngitis, and developmental disorders can, in some cases, anomalies accompany the above symptoms\(^2,16\).

Oral manifestations may include hypodontia or anodontia both primary and permanent teeth and anomaly tooth shape associated (conical and smaller teeth); Sweeney et al\(^1\) pointed out that the permanent teeth most likely to be present in the maxillary are central incisors, followed by the first molars and canines, while in the jaw, canines, first premolars and first molars, are most frequently to be found.

This patients also present dysmorphic roots and crowns (mainly conical incisors and canines and molars with crowns abnormally), diastemas, delayed eruption of permanent teeth, underdeveloped alveolar bone and even cleft palate. As a result of hypodontia and lack of alveolar ridge, the vertical dimension of the face is reduced by a decrease in the lower third. Moreover, within oral manifestations may occur salivary glands hypoplasia and absence of accessory glands resulting in xerostomia and dry lips and / or chapped\(^1,6,16,18\).

ED patients suffering of little psychological and physiological development as a result of an unusual aesthetic and abnormal functions of orofacial structures. Therefore, early treatment is suggested, that requires multidisciplinary collaboration efforts of pediatric professionals, psychologists, oto-laryngologists, speech therapists, dentists and oral rehabilitation, with the responsibility of rehabilitating these patients to improve dental aesthetics and chewing. Dental treatment depends on the severity of the condition, therefore, this will vary according to the age, growth and development of the stomatognathic system of the patient and its main objective is to give the child a treatment offering optimum aesthetics and function, so that the patient can physically, emotionally and socially developed\(^1\).

DISCUSSION

The ED corresponds to a large group of syndromes, there are described under this term about 200 different conditions\(^1,18\). Patients with ED have variety in relation to clinical and genetic aspects and are characterized by abnormalities of the ectodermal structures. They can manifest in problems with hair, nails, teeth, sweat glands and sebaceous glands, they may or may not be associated with alterations in other ectodermal appendices\(^5,16,18\).

The HED is a disease X-linked and is the most common form of ED. In this syndrome, there is no sweat glands or are decreased significantly\(^6\).

Recent advances in molecular and biochemical methods have enabled the classification of the genes causing ED into four major functional subgroups: cell–cell communication and signaling, adhesion, transcription regulation, and development. Despite the great number of ED cases described so far, fewer than 30 have been explained at the molecular level with identification of the causative gene. These findings provide clinicians with the opportunity to redefine ED, not simply as a result of general abnormal ectodermal development but, more precisely, as systemic pathologic conditions. However, these...
methods are not readily available for a routine clinical diagnosis of ED. Children with craniofacial and birth defects are unique and oral problems must be evaluated individually to provide the most suitable treatment. This results in a significant improvement in aesthetics, masticatory and phonetic function. In addition, the positive psychological impact on the child and their parents and relatives should be taken into account.

In many cases of ED, the most common oral characteristic is hypodontia or anodontia. In these cases, the advantages of existing teeth with regard to retention, stability, function, and the phonetics of the denture should be considered. In addition, existing teeth help protect the proprioception mechanism and prevent the formation of residual alveolar ridges.

REFERENCES

210 | PARIPEX - INDIAN JOURNAL OF RESEARCH