ABSTRACT

Introduction: Left Atrial (LA) enlargement has been proposed as a barometer of diastolic burden and a predictor of Common Cardiovascular outcomes such as atrial fibrillation, stroke, congestive heart failure and cardiovascular death. The aim of this paper to study to evaluate the role of left atrial volume index as a predictor of in-hospital events in patients with acute myocardial infarction by two dimensional and Doppler echocardiography. The normal value of indexed LA volume has been reported to be 20±6 ml/m². Patients were therefore divided according to the mean value plus 2 SD, corresponding to 32 ml/m². LV systolic function was assessed semi quantitatively with a visually estimated ejection fraction and wall-motion score index mitral inflow was assessed with pulsed-wave Doppler echocardiography from the apical 4-Chamber view. From the mitral inflow profile, the E and A-wave velocity and E/A velocity ratio were measured. Doppler tissue imaging of the mitral annulus was also obtained. Patients with acute myocardial infarction who had undergone thrombolyis alone included in this study. In-hospital complication occurred like death, Re-MI, Arrhythmias, LV dysfunction and Mechanical complications which were correlated with left atrial volume index by 2D and Doppler echocardiography. The data are expressed as mean ± SD of echo for quantitative data which are expressed as frequency and percentage. The probability value less than 0.05 was considered significant by using SPSS software. Pearson Chi Square test was used to compare LA volume index with all parameters including in-hospital events.

Materials and Methods: This study was carried out in the period of August 2016 to August 2017 in the department of Cardiology, Govt. MohanKumaramangalam Medical College, Salem. Informed consent obtained from every patient included in the study. 100 consecutive patients presenting to ICU with first episode of acute myocardial infarction were enrolled in this study after excluding patients based on exclusion criteria. The diagnosis of myocardial infarction was based on following three criteria: Typical chest pain, ECG changes suggestive of STEMI and Elevated cardiac enzymes. The exclusion criteria were patients with previous history of myocardial infarction, unstable angina and previous history of left ventricular dysfunction. In all patients, we recorded detailed history recording through physical examination, blood samples, serial ECG’s and complete echocardiogram. Echocardiography was performed on a median of 1 day (range 0 to 4 days) after admission using Philips IE 33 3D Echo machine equipped with Tissue Doppler and Harmonic Imaging Technology. Accordingly, the American Society of Echocardiography has recommended quantification of LA size by biplane 2D echocardiography using the method of discs (By Simpson’s rule) or the area-length method. The Biplane area-length method was used which requires measuring LA area from two orthogonal apical views (A1 and A2) and LA length (L) from which LA volume is calculated as 0.85 x A1 x A2 / L. When LA length in measured from two apical views, the shorter value is used to calculate LA volume.

Results: We studied 100 consecutive patients admitted in our ICU with first episode of acute myocardial infarction were included. Among 100 patients 70(70%) were males with the mean age of 52±12 years and 30(30%) were females with the mean age of 60±10 years. AWMI was more common (68%) than the IWMI (32%). Risk factors were smoking, hypertension, diabetes and dyslipidemia in 40%, 46.10%, 45% and 54.65% respectively. The patients (71%) had LA volume index <32ml/m² and 29 patients (29%) had LA volume Index >32ml/m². In hospital events like death, Re-MI, Arrhythmias, LV dysfunction and Mechanical complications were present in 10%, 12%, 37%, 76% and 6% respectively. Our study demonstrates that LA enlargement implies a poor prognosis in patients with first AMI. It has proved as a prediction of in hospital events in patients with acute myocardial infarction.

Conclusion: We studied and Prognostic Significance Of Left Atrial Volume Index Assessed By Doppler Echocardiography In Patients With First Acute Myocardial Infarction.

ORIGINAL RESEARCH PAPER

Evaluation And Prognostic Significance Of Left Atrial Volume Index Assessed By Doppler Echocardiography In Patients With First Acute Myocardial Infarction.

Dr.T.Munusamy *MD., DM.*
Professor, Department of Cardiology, Govt. Mohan Kumaramangalam Medical College, Salem, Tamilnadu

Dr.R.Gunasekaran *MD., DM.*
Professor, Department of Cardiology, Govt. Mohan Kumaramangalam Medical College, Salem, Tamilnadu. *Corresponding Author

KEY WORDS: Left Atrial Volume Index, Acute Myocardial Infarction, Tissue Doppler Imaging

Cardiology
Table 1A Volume Index

<table>
<thead>
<tr>
<th>LAVI</th>
<th>No of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><32ml/m²</td>
<td>71</td>
<td>71%</td>
</tr>
<tr>
<td>>32ml/m²</td>
<td>29</td>
<td>29%</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100%</td>
</tr>
</tbody>
</table>

In hospital events were occurred in the form of Re-MI, Arrhythmias, systolic dysfunction mechanical complication and death in 12%, 37%, 76%, 8% and 10% respectively.

Table 2 In-Hospital Events

<table>
<thead>
<tr>
<th>Re MI</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhythmia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV Dysfunction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical complication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recurrent arrhythmia occurred in 67.5 patients in larger LA volume index group compared to 16.5 in smaller LA volume index group. This resulted in a statistically significant P value (0.000).

Table 3: Re MI and LAVI

<table>
<thead>
<tr>
<th>LAVI</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><32ml/m²</td>
<td>112</td>
<td>88</td>
<td>198</td>
<td>0.0001</td>
</tr>
<tr>
<td>>32ml/m²</td>
<td>112</td>
<td>88</td>
<td>198</td>
<td>0.0001</td>
</tr>
<tr>
<td>Total</td>
<td>224</td>
<td>176</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Re-MI occurred 36.6% of patients in larger LA volume index group compared to 1.4% in smaller LA volume index group resulting in statistically significant P value (0.0001).

Table 4: Arrhythmia and LAVI

<table>
<thead>
<tr>
<th>LAVI</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><32ml/m²</td>
<td>21</td>
<td>27</td>
<td>48</td>
<td>0.0245</td>
</tr>
<tr>
<td>>32ml/m²</td>
<td>21</td>
<td>27</td>
<td>48</td>
<td>0.0245</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>54</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Discussion: This study has conducted to demonstrate that LA volume index is a predictor of in-hospital events after first acute myocardial infarction. Furthermore, LA volume index provides prognostic information incremental to clinical data and standard echocardiographic predictors of outcome, including LV systolic function, Doppler assessment of diastolic function. In our study population of 100 patients, 70% were males and 30% were females. Males were more in number, in LA volume index >32ml/m² and <32ml/m² categories. Gender differences in LA volume index does not occur as per reviewed literature. Similarly in their study also there were no significant gender bias in LA volume index analysis. (P value 0.0624). There exists a direct correlation between advancing age and increased LA volume index. There was no independent correlation exists between regional location of MI and magnitude of LA volume index. Similarly, in our study also, it confirms that (P <0.905).

Our study results clearly support Teresa SM Sang MD et al studies who suggested the left atrial volume was found to correlate positively with age, history of systemic, hypertension, diabetes mellitus, hyperlipidemia and smoking. In this study smokers had higher incidence of LA volume index (>32ml/m²) indicating significant cardiovascular risk. Hypertension was more common among patients with LA volume index >32ml/m² (74.02%) In our study population of 100 patients 70% were males and 30% were females (25.98%) in the group of patients with LA volume index <32ml/m². As a result P value was significant (0.000).

In our study 72.98% of patients were diabetic among patients with LA volume >32ml/m² and only 27.02% were diabetic in the groups with LA <32ml/m² giving rise to significant P value (0.000) the number of patients with dyslipidemia among LA volume index >32ml/m² was 85.44% and 14.56% among LA volume index <32ml/m². The P value was significant (0.000). Moller JE, Hills GS et al in their study has proven that Killip class was higher in patients with larger LA volume and Killip class is a predictor of increasing LA volume with disease progression. In our study, it also confirms that those with Killip class 2 and 3 had a larger LA volume index (>32ml/m²) with a statistically significant P value (0.000).

Re-MI occurred more commonly in the LA volume index >32ml/m² which was 36.6% while it was only 1.4% in the LA volume index <32ml/m² group resulting in a significant P value (0.001). It confirms Moller JE et al studies Arrhythmia were more common (67.5%) in those with LA index >32ml/m² group compared to 19.04% in LA volume index <32ml/m² resulting in a significant P value (0.000). Mechanical complication which included moderate MR and VSR were more common among LA volume index >32ml/m². The P value was 0.124 which is not significant since the number of subjects under these categories were less (8%).

Two recent studies have investigated the relation between LA dilatation and all-cause mortality after AMI. Our study also confirms that more deaths (31.04%) occurred in those with LA volume index >32ml/m² resulting in significant P Value (0.0012). In this study, higher E/e ratio >15 was found in patients with larger LA volume index (>32ml/m²) than those with smaller LA volume index (<32ml/m²) with significant P value (0.0004) which supports study by Teresa SM Sang MD et al.

Conclusion: This single centre observation study demonstrates that LA enlargement implies a poor prognosis in patients with AMI. It has proved as a predictor of in-hospital events in patients with acute myocardial infarction. Measurement of LA volume is simple and important tool which can be easily done and reproducible and may be incorporated in routine assessment of diastolic function. LA
volume index provides prognostic information incremental to clinical data and standard echocardiographic predictors of outcome, including LV systolic function and Doppler assessment of diastolic function. Measurement of LA volume index could emerge as a simple and important tool for risk stratification and as a guide for future surveillance and therapy in patients with acute myocardial infarction if confirmed by perspective studies.

REFERENCES

5. Lester SJ, Ryan EW, Schiller NB, Foster E, Best method in clinical practice and in research studies to determine left atrial area. Am J Cardiol. 1999;84:829-832.

